Cell Lineage Tree Reconstruction from Time Series of 3D Images of Zebrafish Embryogenesis

被引:0
作者
Spir, Robert [1 ,2 ]
Mikula, Karol [1 ,2 ]
Peyrieras, Nadine [3 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math, Radlinskeho 11, Bratislava 81005, Slovakia
[2] Algoritmy SK Sro, Sulekova 6, Bratislava 81106, Slovakia
[3] CNRS, Inst Neurobiol Alfred Fessard, UPR 3294, Ave Terrasse, F-91198 Gif Sur Yvette, France
来源
COMPUTER VISION - ACCV 2016 WORKSHOPS, PT II | 2017年 / 10117卷
关键词
MICROSCOPY; SEGMENTATION; DIFFUSION; EQUATIONS; EMBRYOS;
D O I
10.1007/978-3-319-54427-439
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper presents numerical algorithms, postprocessing and validation steps for an automated cell tracking and cell lineage tree reconstruction from large-scale 3D+time two-photon laser scanning microscopy images of early stages of zebrafish (Danio rerio) embryo development. The cell trajectories are extracted as centered paths inside segmented spatio-temporal tree structures representing cell movements and divisions. Such paths are found by using a suitably designed and computed constrained distance functions and by a backtracking in steepest descent direction of a potential field based on these distance functions combination. Since the calculations are performed on big data, parallelization is required to speed up the processing. By careful choice and tuning of algorithm parameters we can adapt the calculations to the microscope images of vertebrae species. Then we can compare the results with ground truth data obtained by manual checking of cell links by biologists and measure the accuracy of our algorithm. Using automatic validation process and visualisation tool that can display ground truth data and our result simultaneously, along with the original 3D data, we can easily verify the correctness of the tracking.
引用
收藏
页码:539 / 554
页数:16
相关论文
共 24 条
  • [1] Amat F, 2014, NAT METHODS, V11, P951, DOI [10.1038/NMETH.3036, 10.1038/nmeth.3036]
  • [2] Bao Z., 2016, P NATL ACAD SCI USA, V103, P2707
  • [3] Bellaiche Y., 2011, P 33 ANN INT IEEE EM
  • [4] Bourgine P, 2010, KYBERNETIKA, V46, P226
  • [5] Bourgine P, 2009, LECT NOTES COMPUT SC, V5567, P38, DOI 10.1007/978-3-642-02256-2_4
  • [6] Geodesic active contours
    Caselles, V
    Kimmel, R
    Sapiro, G
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) : 61 - 79
  • [7] CASELLES V, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P694, DOI 10.1109/ICCV.1995.466871
  • [8] Image denoising and segmentation via nonlinear diffusion
    Chen, YM
    Vemuri, BC
    Wang, L
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (5-6) : 131 - 149
  • [9] A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage
    Faure, Emmanuel
    Savy, Thierry
    Rizzi, Barbara
    Melani, Camilo
    Stasova, Olga
    Fabreges, Dimitri
    Spir, Robert
    Hammons, Mark
    Cunderlik, Robert
    Recher, Gaelle
    Lombardot, Benoit
    Duloquin, Louise
    Colin, Ingrid
    Kollar, Jozef
    Desnoulez, Sophie
    Affaticati, Pierre
    Maury, Benoit
    Boyreau, Adeline
    Nief, Jean-Yves
    Calvat, Pascal
    Vernier, Philippe
    Frain, Monique
    Lutfalla, Georges
    Kergosien, Yannick
    Suret, Pierre
    Remesikova, Mariana
    Doursat, Rene
    Sarti, Alessandro
    Mikula, Karol
    Peyrieras, Nadine
    Bourgine, Paul
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Frolkovic P, 2007, KYBERNETIKA, V43, P817