Surface sampling and the intrinsic Voronoi diagram

被引:21
作者
Dyer, Ramsay [1 ]
Zhang, Hao [1 ]
Moller, Torsten [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, GrUVi Lab, Burnaby, BC V5A 1S6, Canada
关键词
D O I
10.1111/j.1467-8659.2008.01279.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We develop adaptive sampling criteria which guarantee a topologically faithful mesh and demonstrate an improvement and simplification over earlier results, albeit restricted to 2D surfaces. These sampling criteria are based on functions defined by intrinsic properties of the surface: the strong convexity, radius and the injectivity radius. We establish inequalities that relate these functions to the local feature size, thus enabling a comparison between the demands of the intrinsic sampling criteria and those based on Euclidean distances and the medial axis.
引用
收藏
页码:1393 / 1402
页数:10
相关论文
共 16 条
[1]  
Amenta N., 1998, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, P39, DOI 10.1145/276884.276889
[2]   Provably good sampling and meshing of surfaces [J].
Boissonnat, JD ;
Oudot, S .
GRAPHICAL MODELS, 2005, 67 (05) :405-451
[3]  
Chavel I., 2006, RIEMANNIAN GEOMETRY
[4]  
CHENG SW, 2004, SCG 04, P280
[5]  
Dai JF, 2006, LECT NOTES COMPUT SC, V4077, P59
[6]  
doCarmo M. P., 1976, Differential geometry of curves and surfaces
[7]  
DYER R, 2007, S SOL PHYS MOD, P415
[8]  
EDELSBRUNNER H, 1994, SCG 1994, P285
[9]  
Federer H., 1959, Trans. Amer. Math. Soc., V93, P418, DOI [10.1090/S0002-9947-1959-0110078-1, DOI 10.2307/1993504, DOI 10.1090/S0002-9947-1959-0110078-1]
[10]  
GAO J, 2008, S DISCR ALG, P571