Hyperspectral Target Detection

被引:466
作者
Nasrabadi, Nasser M. [1 ]
机构
[1] IEEE, Zurich, Switzerland
关键词
ANOMALY DETECTION; RECOGNITION;
D O I
10.1109/MSP.2013.2278992
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Over the last decade, hyperspectral imagery (HSI) obtained by remote sensing systems has provided significant information about the spectral characteristics of the materials in the scene. Typically, a hyperspectral spectrometer provides hundreds of narrow contiguous bands over a wide range of the electromagnetic spectrum. Hyperspectral sensors measure the reflective (or emissive) properties of objects in the visible and short-wave infrared (IR) regions (or the mid-wave and long-wave IR regions) of the spectrum. Processing of these data allows algorithms to detect and identify targets of interest in a hyperspectral scene by exploiting the spectral signatures of the materials [1], [2]. © 1991-2012 IEEE.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 36 条
  • [1] A support vector method for anomaly detection in hyperspectral imagery
    Banerjee, Amit
    Burlina, Philippe
    Diehl, Chris
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2282 - 2291
  • [2] MODTRAN4 radiative transfer modeling for atmospheric correction
    Berk, A
    Anderson, GP
    Bernstein, LS
    Acharya, PK
    Dothe, H
    Matthew, MW
    Adler-Golden, SM
    Chetwynd, JH
    Richtsmeier, SC
    Pukall, B
    Allred, CL
    Jeong, LS
    Hoke, ML
    [J]. OPTICAL SPECTROSCOPIC TECHNIQUES AND INSTRUMENTATION FOR ATMOSPHERIC AND SPACE RESEARCH III, 1999, 3756 : 348 - 353
  • [3] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379
  • [4] Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
  • [5] Improved covariance matrices for point target detection in hyperspectral data
    Caefer, Charlene E.
    Silverman, Jerry
    Orthal, Oded
    Antonelli, Dani
    Sharoni, Yaron
    Rotman, Stanley R.
    [J]. OPTICAL ENGINEERING, 2008, 47 (07)
  • [6] Composite kernels for hyperspectral image classification
    Camps-Valls, G
    Gomez-Chova, L
    Muñoz-Marí, J
    Vila-Francés, J
    Calpe-Maravilla, J
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) : 93 - 97
  • [7] Chen C., 2012, P SOC PHOTO-OPT INS, V8390
  • [8] Effects of linear projections on the performance of target detection and classification in hyperspectral imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2011, 5
  • [9] Sparse Representation for Target Detection in Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 629 - 640
  • [10] Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 676 - 680