On the converse theorem for Borcherds products

被引:37
作者
Bruinier, Jan Hendrik [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Automorphic form; Theta function; Borcherds product; Picard group; AUTOMORPHIC-FORMS; VARIETIES;
D O I
10.1016/j.jalgebra.2013.08.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new converse theorem for Borcherds' multiplicative theta lift which improves the previously known results. To this end we develop a newform theory for vector valued modular forms for the Weil representation, which might be of independent interest. We also derive lower bounds for the ranks of the Picard groups and the spaces of holomorphic top degree differential forms of modular varieties associated to orthogonal groups. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 342
页数:28
相关论文
共 23 条
[1]  
Barnard A., 2003, ARXIVMATH0307102V1
[2]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[3]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[4]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[5]  
Bruinier J., 2010, London Math. Soc. Lecture Note Ser, V372, P12
[6]  
Bruinier J., 2002, LECT NOTES MATH, V1780
[7]   Heegner divisors, L-functions and harmonic weak Maass forms [J].
Bruinier, Jan ;
Ono, Ken .
ANNALS OF MATHEMATICS, 2010, 172 (03) :2135-2181
[8]   Regularized theta lifts for orthogonal groups over totally real fields [J].
Bruinier, Jan Hendrik .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 :177-222
[9]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90
[10]   On the rank of Picard groups of modular varieties attached to orthogonal groups [J].
Bruinier, JH .
COMPOSITIO MATHEMATICA, 2002, 133 (01) :49-63