Boundedness of the maximal operator in the local Morrey-Lorentz spaces

被引:15
作者
Aykol, Canay [1 ]
Guliyev, Vagif S. [2 ,3 ]
Serbetci, Ayhan [1 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
[2] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[3] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
关键词
Morrey spaces; Lorentz spaces; Lorentz-Morrey spaces; local Morrey-Lorentz spaces; maximal operator; SUFFICIENT CONDITIONS;
D O I
10.1186/1029-242X-2013-346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define a new class of functions called local Morrey-Lorentz spaces M-p,q;lambda(loc)(R-n), 0 < p,q <= infinity and 0 <= lambda <= 1. These spaces generalize Lorentz spaces such that M-p,q;0(loc) (R-n) = L-p,L-q(R-n). We show that in the case lambda < 0 or lambda > 1, the space M-p,q;lambda(loc) (R-n) is trivial, and in the limiting case lambda = 1, the space M-p,q;1(loc) (R-n) is the classical Lorentz space Lambda (infinity,t1/p - 1/q) (R-n). We show that for 0 < q <= p < infinity and 0 < lambda <= q/p, the local Morrey-Lorentz spaces M-p,q;lambda(loc) (R-n) are equal to weak Lebesgue spaces WL1/p-lambda/q (R-n). We get an embedding between local Morrey-Lorentz spaces and Lorentz-Morrey spaces. Furthermore, we obtain the boundedness of the maximal operator in the local Morrey-Lorentz spaces.
引用
收藏
页数:11
相关论文
共 29 条
[1]  
Adams D. R., 1981, Lectures on Lp-Potential Theory
[2]  
Adams D.R., 1996, GRUNDLEHREN MATH WIS, V314
[3]   ON MORREY-BESOV INEQUALITIES [J].
ADAMS, DR ;
LEWIS, JL .
STUDIA MATHEMATICA, 1982, 74 (02) :169-182
[4]  
[Anonymous], 1994, Integral operators on function spaces on the homogeneous groups and on domains in
[5]  
[Anonymous], 1964, PUBL MATH I, DOI 10.1007/BF02684796
[6]  
Bennett C., 1988, Interpolation of operators
[7]  
Burenkov VI, 2010, EURASIAN MATH J, V1, P32
[8]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[9]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[10]   Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces [J].
Burenkov, Victor I. ;
Guliyev, Vagif S. .
POTENTIAL ANALYSIS, 2009, 30 (03) :211-249