WEAK FUBINI PROPERTY AND INFINITY HARMONIC FUNCTIONS IN RIEMANNIAN AND SUB-RIEMANNIAN MANIFOLDS

被引:0
作者
Dragoni, Federica [1 ]
Manfredi, Juan J. [2 ]
Vittone, Davide [3 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff, Wales
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Absolutely minimizing Lipschitz extension; infinity Laplace equation; Riemannian manifolds; Carnot-Caratheodory spaces; LIPSCHITZ EXTENSIONS; ABSOLUTE MINIMIZERS; ARONSSON EQUATION; VECTOR-FIELDS; SPACES; LAPLACIAN; DISTANCE; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the relationship between infinity harmonic functions, absolutely minimizing Lipschitz extensions, strong absolutely minimizing Lipschitz extensions, and absolutely gradient minimizing extensions in Carnot-Caratheodory spaces. Using the weak Fubini property we show that absolutely minimizing Lipschitz extensions are infinity harmonic in any sub-Riemannian manifold.
引用
收藏
页码:837 / 859
页数:23
相关论文
共 26 条