Diffusion Monte Carlo in Internal Coordinates

被引:19
|
作者
Petit, Andrew S. [1 ]
McCoy, Anne B. [1 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2013年 / 117卷 / 32期
基金
美国国家科学基金会;
关键词
POTENTIAL-ENERGY SURFACES; DISCRETE VARIABLE REPRESENTATION; EXCITED-STATES; SCHRODINGER-EQUATION; VIBRATIONAL-STATES; WATER DIMER; RANDOM-WALK; QUANTUM; H-3(+); SPECTRA;
D O I
10.1021/jp312710u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An internal coordinate extension of diffusion Monte Carlo (DMC) is described as a first step toward a generalized reduced-dimensional DMC approach. The method places no constraints on the choice of internal coordinates other than the requirement that they all be independent. Using H-3(+) and its isotopologues as model systems, the methodology is shown to be capable of successfully describing the ground state properties of molecules that undergo large amplitude, zero-point vibrational motions. Combining the approach developed here with the fixed-node approximation allows vibrationally excited states to be treated. Analysis of the ground state probability distribution is shown to provide important insights into the set of internal coordinates that are less strongly coupled and therefore more suitable for use as the nodal coordinates for the fixed-node DMC calculations. In particular, the curvilinear normal mode coordinates are found to provide reasonable nodal surfaces for the fundamentals of H2D+ and D2H+ despite both molecules being highly fluxional.
引用
收藏
页码:7009 / 7018
页数:10
相关论文
共 50 条
  • [1] Diffusion Monte Carlo
    Mitas, L
    QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 247 - 261
  • [2] Enhancing backbone sampling in Monte Carlo simulations using internal coordinates normal mode analysis
    Gil, Victor A.
    Lecina, Daniel
    Grebner, Christoph
    Guallar, Victor
    BIOORGANIC & MEDICINAL CHEMISTRY, 2016, 24 (20) : 4855 - 4866
  • [3] Improved Diffusion Monte Carlo
    Hairer, Martin
    Weare, Jonathan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (12) : 1995 - 2021
  • [4] A MONTE-CARLO APPROACH TO DIFFUSION
    HAGERSTRAND, T
    ARCHIVES EUROPEENNES DE SOCIOLOGIE, 1965, 6 (01): : 43 - 67
  • [5] On the mathematical foundations of diffusion Monte Carlo
    Caffarel, Michel
    Del Moral, Pierre
    de Montella, Luc
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [6] Particle diffusion Monte Carlo (PDMC)
    Zarezadeh, Zakarya
    Costantini, Giovanni
    MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (02): : 121 - 130
  • [7] Correlated sampling in diffusion Monte Carlo
    Anderson, James B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [8] Introduction to the diffusion Monte Carlo method
    Kosztin, I
    Faber, B
    Schulten, K
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) : 633 - 644
  • [9] Diffusion Monte Carlo in continuous time
    Syljuåsen, OF
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 281 - 292
  • [10] Diffusion Monte Carlo in Continuous Time
    Olav F. Syljuåsen
    Journal of Low Temperature Physics, 2005, 140 : 281 - 292