共 63 条
Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes
被引:74
作者:
Devi, Gitali
[1
]
Yuan, Zhen
[1
]
Lu, Yunpeng
[1
]
Zhao, Yanli
[1
]
Chen, Gang
[1
]
机构:
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
基金:
新加坡国家研究基金会;
关键词:
DOUBLE-HELICAL RNA;
SECONDARY STRUCTURE;
DNA;
PNA;
OLIGONUCLEOTIDES;
BINDING;
STABILITY;
PH;
THERMODYNAMICS;
NUCLEOSIDE;
D O I:
10.1093/nar/gkt1367
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA(2)-PNA triplex, without appreciable binding to single-stranded regions to form an RNA-PNA duplex or, via strand invasion, forming an RNA-PNA(2) triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed -1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA(2)-PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA-PNA and DNA-PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson-Crick-like G-L pair. An RNA(2)-PNA triplex is significantly more stable than a DNA(2)-PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone-backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.
引用
收藏
页码:4008 / 4018
页数:11
相关论文