Hybrid Schemes with High-Order Multioperators for Computing Discontinuous Solutions

被引:3
作者
Tolstykh, A. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Moscow 119333, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
high-order multioperators; hybrid schemes; problem with discontinuous solutions; Navier-Stokes equations; FLUX-CORRECTED TRANSPORT; DIFFERENCE-SCHEMES; CONSERVATION LAWS; EQUATIONS; SYSTEMS; APPROXIMATIONS;
D O I
10.1134/S0965542513070178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Results are presented concerning high-order multioperator schemes and their monotonized versions as applied to the computation of discontinuous solutions. Two types of hybrid schemes are considered. Solutions of several test problems, including those with extremely strong discontinuities, are presented. An example of solving the Navier-Stokes equations at low supersonic Mach numbers by applying multioperator schemes without monotonization is given.
引用
收藏
页码:1303 / 1322
页数:20
相关论文
共 50 条
[21]   Steady discrete shocks of high-order RBC schemes [J].
Lerat, Alain .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 252 :350-364
[22]   High-order multiderivative IMEX schemes [J].
Dittmann, Alexander J. .
APPLIED NUMERICAL MATHEMATICS, 2021, 160 :205-216
[23]   Revisiting the spectral analysis for high-order spectral discontinuous methods [J].
Vanharen, Julien ;
Puigt, Guillaume ;
Vasseur, Xavier ;
Boussuge, Jean-Francois ;
Sagaut, Pierre .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 337 :379-402
[24]   High-order discontinuous Galerkin methods for coastal hydrodynamics applications [J].
Brus, S. R. ;
Wirasaet, D. ;
Kubatko, E. J. ;
Westerink, J. J. ;
Dawson, C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 :860-899
[25]   High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics [J].
Duboc, Frederic ;
Enaux, Cedric ;
Jaouen, Stephane ;
Jourdren, Herve ;
Wolff, Marc .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) :105-110
[26]   On multioperators principle for constructing arbitrary-order difference schemes [J].
Tolstykh, AI .
APPLIED NUMERICAL MATHEMATICS, 2003, 46 (3-4) :411-423
[27]   One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods [J].
Casoni, E. ;
Peraire, J. ;
Huerta, A. .
ECCOMAS MULTIDISCIPLINARY JUBILEE SYMPOSIUM: NEW COMPUTATIONAL CHALLENGES IN MATERIALS, STRUCTURES AND FLUIDS, 2009, 14 :307-+
[28]   One-dimensional shock-capturing for high-order discontinuous Galerkin methods [J].
Casoni, E. ;
Peraire, J. ;
Huerta, A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (06) :737-755
[29]   High-order discontinuous Galerkin RANS solutions of the incompressible flow over a delta wing [J].
Crivellini, Andrea ;
D'Alessandro, Valerio ;
Bassi, Francesco .
COMPUTERS & FLUIDS, 2013, 88 :663-677
[30]   High-order discontinuous Galerkin solver on hybrid anisotropic meshes for laminar and turbulent simulations [J].
Jiang, Zhen-hua ;
Yan, Chao ;
Yu, Jian .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (07) :799-812