Global rigidity of direction-length frameworks

被引:1
|
作者
Clinch, Katie [1 ]
Jackson, Bill [1 ]
Keevash, Peter [2 ]
机构
[1] Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Univ Oxford, Math Inst, Woodstock Rd, London OX2 6GG, England
关键词
Direction-length frameworks; Global rigidity; ALGORITHMS;
D O I
10.1016/j.jctb.2020.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-dimensional direction-length framework is a collection of points in the plane which are linked by pairwise constraints that fix the direction or length of the line segments joining certain pairs of points. We represent it as a pair (G, p), where G = (V; D, L) is a 'mixed' graph and p : V -> R-2 is a point configuration for V. It is globally rigid if every direction-length framework (G, q) which satisfies the same constraints can be obtained from (G, p) by a translation or a rotation by 180 degrees. We characterise the mixed graphs G with the property that every generic framework (G, p) is globally rigid. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 46 条
  • [31] Sufficient Conditions for the Global Rigidity of Periodic Graphs
    Kaszanitzky, Viktoria E.
    Kiraly, Csaba
    Schulze, Bernd
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 1 - 16
  • [32] Direction Estimation by Minimum Squared Arc Length
    McKilliam, Robby G.
    Quinn, Barry G.
    Clarkson, I. Vaughan L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (05) : 2115 - 2124
  • [33] A characterisation of the generic rigidity of 2-dimensional point-line frameworks
    Jackson, Bill
    Owen, J. C.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 119 : 96 - 121
  • [34] ROOTED-TREE DECOMPOSITIONS WITH MATROID CONSTRAINTS AND THE INFINITESIMAL RIGIDITY OF FRAMEWORKS WITH BOUNDARIES
    Katoh, Naoki
    Tanigawa, Shin-ichi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 155 - 185
  • [35] Global smooth and topological rigidity of hyperbolic lattice actions
    Brown, Aaron
    Hertz, Federico Rodriguez
    Wang, Zhiren
    ANNALS OF MATHEMATICS, 2017, 186 (03) : 913 - 972
  • [36] SUFFICIENT CONDITIONS FOR 2-DIMENSIONAL GLOBAL RIGIDITY
    Gu, Xiaofeng
    Meng, Wei
    Rolek, Martin
    Wang, Yue
    Yu, Gexin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2520 - 2534
  • [37] Vertex Splitting, Coincident Realisations, and Global Rigidity of Braced Triangulations
    Cruickshank, James
    Jackson, Bill
    Tanigawa, Shin-ichi
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (01) : 192 - 208
  • [38] Vertex Splitting, Coincident Realisations, and Global Rigidity of Braced Triangulations
    James Cruickshank
    Bill Jackson
    Shin-ichi Tanigawa
    Discrete & Computational Geometry, 2023, 69 : 192 - 208
  • [39] ON THE GLOBAL RIGIDITY OF SPHERE PACKINGS ON 3-DIMENSIONAL MANIFOLDS
    Xu, Xu
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (01) : 175 - 193
  • [40] Global rigidity of periodic graphs under fixed-lattice representations
    Kaszanitzky, Viktoria E.
    Schulze, Bernd
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 176 - 218