Global rigidity of direction-length frameworks

被引:1
|
作者
Clinch, Katie [1 ]
Jackson, Bill [1 ]
Keevash, Peter [2 ]
机构
[1] Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Univ Oxford, Math Inst, Woodstock Rd, London OX2 6GG, England
关键词
Direction-length frameworks; Global rigidity; ALGORITHMS;
D O I
10.1016/j.jctb.2020.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-dimensional direction-length framework is a collection of points in the plane which are linked by pairwise constraints that fix the direction or length of the line segments joining certain pairs of points. We represent it as a pair (G, p), where G = (V; D, L) is a 'mixed' graph and p : V -> R-2 is a point configuration for V. It is globally rigid if every direction-length framework (G, q) which satisfies the same constraints can be obtained from (G, p) by a translation or a rotation by 180 degrees. We characterise the mixed graphs G with the property that every generic framework (G, p) is globally rigid. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 46 条
  • [21] Characterizing redundant rigidity and redundant global rigidity of body-hinge graphs
    Kobayashi, Yuki
    Higashikawa, Yuya
    Katoh, Naoki
    Sljoka, Adnan
    INFORMATION PROCESSING LETTERS, 2016, 116 (02) : 175 - 178
  • [22] Generic Global Rigidity
    Robert Connelly
    Discrete & Computational Geometry, 2005, 33 : 549 - 563
  • [23] Global rigidity of triangulated manifolds
    Cruickshank, James
    Jackson, Bill
    Tanigawa, Shin-ichi
    ADVANCES IN MATHEMATICS, 2024, 458
  • [24] On the global rigidity of tensegrity graphs
    Garamvolgyi, Daniel
    DISCRETE APPLIED MATHEMATICS, 2021, 302 : 114 - 122
  • [25] Global Rigidity: The Effect of Coning
    Connelly, R.
    Whiteley, W. J.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (04) : 717 - 735
  • [26] Global Rigidity: The Effect of Coning
    R. Connelly
    W. J. Whiteley
    Discrete & Computational Geometry, 2010, 43 : 717 - 735
  • [27] Global rigidity of triangulations with braces
    Jordan, Tibor
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 : 249 - 288
  • [28] Sufficient conditions for the global rigidity of graphs
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 113 : 123 - 140
  • [29] GLOBAL RIGIDITY OF UNIT BALL GRAPHS
    Garamvolgyi, Daniel
    Jordan, Tibor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 212 - 229
  • [30] Sufficient Conditions for the Global Rigidity of Periodic Graphs
    Viktória E. Kaszanitzky
    Csaba Király
    Bernd Schulze
    Discrete & Computational Geometry, 2022, 67 : 1 - 16