The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

被引:0
作者
Mednykh, A. D. [1 ]
Mednykh, I. A. [1 ]
机构
[1] Novosibirsk Siberian Fed Univ, Novosibirsk State Univ, Sobolev Inst Math, Krasnoyarsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann surface; holomorphic mapping; anticonformal involution; real curve; conformal automorphism; KLEIN SURFACES; THEOREM;
D O I
10.1134/S0037446616060124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote the set of all holomorphic mappings of a genus 3 Riemann surface S (3) onto a genus 2 Riemann surface S (2) by Hol(S (3), S (2)). Call two mappings f and g in Hol(S (3), S (2)) equivalent whenever there exist conformal automorphisms alpha and beta of S (3) and S (2) respectively with f au broken vertical bar alpha = beta au broken vertical bar g. It is known that Hol(S (3), S (2)) always consists of at most two equivalence classes. We obtain the following results: If Hol(S (3), S (2)) consists of two equivalence classes then both S (3) and S (2) can be defined by real algebraic equations; furthermore, for every pair of inequivalent mappings f and g in Hol(S (3), S (2)) there exist anticonformal automorphisms alpha- and beta- with f au broken vertical bar alpha- = beta- au broken vertical bar g. Up to conformal equivalence, there exist exactly three pairs of Riemann surfaces (S (3), S (2)) such that Hol(S (3), S (2)) consists of two equivalence classes.
引用
收藏
页码:1055 / 1065
页数:11
相关论文
共 20 条
[1]   ON LIFTING THE HYPERELLIPTIC INVOLUTION [J].
ACCOLA, RDM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) :341-347
[2]  
ALZATI A, 1990, ANN U FERRARA 7, V36, P45
[3]  
[Anonymous], 1913, REND CIRC MAT PALERM, DOI DOI 10.1007/BF03016041
[4]  
[Anonymous], 1980, Graduate Texts in Mathematics
[5]  
BOLZA O., 1888, AM J MATH, V10, P47, DOI DOI 10.2307/2369402
[6]  
Bujalance E., 2010, SYMMETRIES COMPACT R
[7]   UNRAMIFIED DOUBLE COVERINGS OF HYPERELLIPTIC SURFACES [J].
FARKAS, HM .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :150-155
[8]   BORDERED KLEIN SURFACES WITH MAXIMAL SYMMETRY [J].
GREENLEAF, N ;
MAY, CL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (01) :265-283
[9]  
Howard A., 1983, ANN SCUOLA NORMALE S, V10, P429
[10]   ARITHMETIC VARIETY OF MODULI FOR GENUS 2 [J].
IGUSA, JI .
ANNALS OF MATHEMATICS, 1960, 72 (03) :612-649