A CONCISE PROOF OF THE MULTIPLICATIVE ERGODIC THEOREM ON BANACH SPACES

被引:29
作者
Gonzalez-Tokman, Cecilia [1 ]
Quas, Anthony [2 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Oseledets theorem; multiplicative ergodic theorem; infinite dimensional random dynamical systems; EXPONENTS; MANIFOLDS;
D O I
10.3934/jmd.2015.9.237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new proof of a multiplicative ergodic theorem for quasi-compact operators on Banach spaces with a separable dual. Our proof works by constructing the finite-codimensional 'slow' subspaces (those where the growth rate is dominated by some, i), in contrast with earlier infinite-dimensional multiplicative ergodic theorems which work by constructing the finite-dimensional fast subspaces. As an important consequence for applications, we are able to get rid of the injectivity requirements that appear in earlier works.
引用
收藏
页码:237 / 255
页数:19
相关论文
共 13 条
  • [1] [Anonymous], ARXIV150206554
  • [2] [Anonymous], 1991, CAMBRIDGE STUDIES AD
  • [3] Doan T.S, 2009, THESIS TU DRESDEN
  • [4] Coherent structures and isolated spectrum for Perron-Frobenius cocycles
    Froyland, Gary
    Lloyd, Simon
    Quas, Anthony
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 729 - 756
  • [5] A semi-invertible operator Oseledets theorem
    Gonzalez-Tokman, Cecilia
    Quas, Anthony
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1230 - 1272
  • [6] Kato T., 1966, Perturbation Theory for Linear Operators, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9, 10.1007/978-3-642-53393-8]
  • [7] Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space Introduction
    Lian, Zeng
    Lu, Kening
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 206 (967) : 1 - +
  • [8] MANE R, 1983, LECT NOTES MATH, V1007, P522
  • [9] Oseledec Valery Iustinovich, 1968, Trans. Moscow Math. Soc, V19, P197
  • [10] Pisier G., 1989, The Volume of Convex Bodies and Banach Space Geometry