Improvement of the first coulomb efficiency and rate performance of Li1.5Ni0.25Mn0.75O2.5 with spinel LiNi0.5Mn1.5O4 doping

被引:1
|
作者
Liu, Yunjian [1 ,2 ]
Lv, Jun [1 ]
Zhu, Guangyan [2 ]
Gao, Yanyong [1 ]
Liu, Sanbin [2 ]
Chen, Xiaohua [2 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Technol, Zhenjiang, Peoples R China
[2] Postdoctoral Workstn Chery Automobile Co Ltd, Wuhu, Anhui, Peoples R China
关键词
Layered manganese-enriched electrode; LiNi0.5Mn1.5O4; Doping; Electrochemical performance; Electrochemical impedance spectroscopy; OXIDE ELECTRODES; RATE CAPABILITY; CO ELECTRODES; HIGH-CAPACITY; LITHIUM; CATHODES; MN; NI;
D O I
10.1007/s11581-013-0859-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li1.1Ni0.25Mn0.75O2.3 and Li1.5Ni0.25Mn0.75O2.5 have been synthesized by co-precipitation method. The effect of the LiNi0.5Mn1.5O4 spinel structure on physical and electrochemical properties is discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrochemical performance tests. The LiNi0.5Mn1.5O4 spinel structure is detected in the XRD pattern, TEM image, first discharge, and CV curves of the Li1.1Ni0.25Mn0.75O2.3 electrode. The rate, cyclic performance, and first coulomb efficiency of Li1.1Ni0.25Mn0.75O2.35 are higher than those of Li1.5Ni0.25Mn0.75O2.5. The first coulomb efficiencies of Li1.1Ni0.25Mn0.75O2.3 and Li1.5Ni0.25Mn0.75O2.5 are 86.2 and 74.7 %, and the capacity retentions are 98.7 and 94.1 % after 50 cycles, respectively. EIS results indicate that the charge-transfer reaction resistance of Li1.1Ni0.25Mn0.75O2.3 is lower than that of Li1.5Ni0.25Mn0.75O2.5, which is responsible for the better rate capacity of Li1.1Ni0.25Mn0.75O2.3.
引用
收藏
页码:1335 / 1340
页数:6
相关论文
共 50 条
  • [21] Aqueous Rechargeable Lithium Battery Based on LiNi0.5Mn1.5O4 Spinel with Promising Performance
    Carlos Arrebola, Jose
    Caballero, Alvaro
    Hernan, Lourdes
    Morales, Julian
    ENERGY & FUELS, 2013, 27 (12) : 7854 - 7857
  • [22] Study on the electrochemical performance of LiNi0.5Mn1.5O4 with different precursor
    Yunjian Liu
    Long Chen
    Ionics, 2012, 18 : 649 - 653
  • [23] Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning
    Xu, Rui
    Zhang, Xiaofeng
    Chamoun, Rita
    Shui, Jianglan
    Li, James C. M.
    Lu, Jun
    Amine, Khalil
    Belharouak, Ilias
    NANO ENERGY, 2015, 15 : 616 - 624
  • [24] Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials
    Belharouak, Ilias
    Koenig, Gary M., Jr.
    Ma, Jiwei
    Wang, D. P.
    Amine, Khalil
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (03) : 232 - 236
  • [25] Synthesis, Modification, and Lithium-Storage Properties of Spinel LiNi0.5Mn1.5O4
    Chen, Junxin
    Huang, Zhe
    Zeng, Weihao
    Cao, Fei
    Ma, Jingjing
    Tian, Weixi
    Mu, Shichun
    CHEMELECTROCHEM, 2021, 8 (04) : 608 - 624
  • [26] Electrochemical Intercalation Kinetics of Lithium Ions for Spinel LiNi0.5Mn1.5O4 Cathode Material
    Yi, Ting-Feng
    Li, Chun-Yan
    Zhu, Yan-Rong
    Zhu, Rong-Sun
    Shu, J.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2010, 46 (02) : 227 - 232
  • [27] Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping
    Chen, Yuyang
    Sun, Yang
    Huang, Xuejie
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 115 : 109 - 116
  • [28] High Rate Micron-Sized Ordered LiNi0.5Mn1.5O4
    Ma, Xiaohua
    Kang, Byoungwoo
    Ceder, Gerbrand
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (08) : A925 - A931
  • [29] Role of carbon nanotube on preparation of spinel LiNi0.5Mn1.5O4 cathode
    Ding, Hao
    Zhang, Ningshuang
    Wang, Peng
    Dong, Hong
    Li, Runrun
    Li, Shiyou
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (30) : 14440 - 14449
  • [30] On the Composition of LiNi0.5Mn1.5O4 Cathode Active Materials
    Stueble, Pirmin
    Mereacre, Valeriu
    Gesswein, Holger
    Binder, Joachim R.
    ADVANCED ENERGY MATERIALS, 2023, 13 (10)