Improvement of the first coulomb efficiency and rate performance of Li1.5Ni0.25Mn0.75O2.5 with spinel LiNi0.5Mn1.5O4 doping

被引:1
|
作者
Liu, Yunjian [1 ,2 ]
Lv, Jun [1 ]
Zhu, Guangyan [2 ]
Gao, Yanyong [1 ]
Liu, Sanbin [2 ]
Chen, Xiaohua [2 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Technol, Zhenjiang, Peoples R China
[2] Postdoctoral Workstn Chery Automobile Co Ltd, Wuhu, Anhui, Peoples R China
关键词
Layered manganese-enriched electrode; LiNi0.5Mn1.5O4; Doping; Electrochemical performance; Electrochemical impedance spectroscopy; OXIDE ELECTRODES; RATE CAPABILITY; CO ELECTRODES; HIGH-CAPACITY; LITHIUM; CATHODES; MN; NI;
D O I
10.1007/s11581-013-0859-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li1.1Ni0.25Mn0.75O2.3 and Li1.5Ni0.25Mn0.75O2.5 have been synthesized by co-precipitation method. The effect of the LiNi0.5Mn1.5O4 spinel structure on physical and electrochemical properties is discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and electrochemical performance tests. The LiNi0.5Mn1.5O4 spinel structure is detected in the XRD pattern, TEM image, first discharge, and CV curves of the Li1.1Ni0.25Mn0.75O2.3 electrode. The rate, cyclic performance, and first coulomb efficiency of Li1.1Ni0.25Mn0.75O2.35 are higher than those of Li1.5Ni0.25Mn0.75O2.5. The first coulomb efficiencies of Li1.1Ni0.25Mn0.75O2.3 and Li1.5Ni0.25Mn0.75O2.5 are 86.2 and 74.7 %, and the capacity retentions are 98.7 and 94.1 % after 50 cycles, respectively. EIS results indicate that the charge-transfer reaction resistance of Li1.1Ni0.25Mn0.75O2.3 is lower than that of Li1.5Ni0.25Mn0.75O2.5, which is responsible for the better rate capacity of Li1.1Ni0.25Mn0.75O2.3.
引用
收藏
页码:1335 / 1340
页数:6
相关论文
共 50 条
  • [1] Improvement of the first coulomb efficiency and rate performance of Li1.5Ni0.25Mn0.75O2.5 with spinel LiNi0.5Mn1.5O4 doping
    Yunjian Liu
    Jun Lv
    Guangyan Zhu
    Yanyong Gao
    Sanbin Liu
    Xiaohua Chen
    Ionics, 2013, 19 : 1335 - 1340
  • [2] A Study of High-Voltage LiNi0.5Mn1.5O4 and High-Capacity Li1.5Ni0.25Mn0.75O2.5 Blends
    Zhang, Xiaofeng
    Xu, Rui
    Li, Li
    Yu, Cun
    Ren, Yang
    Belharouak, Ilias
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) : A1079 - A1083
  • [3] Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating
    Liu, Yunjian
    Gao, Yanyong
    Wang, Qiliang
    Dou, Aichun
    IONICS, 2014, 20 (05) : 739 - 745
  • [4] Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating
    Yunjian Liu
    Yanyong Gao
    Qiliang Wang
    Aichun Dou
    Ionics, 2014, 20 : 739 - 745
  • [5] Study on the action mechanism of doping transitional elements in spinel LiNi0.5Mn1.5O4
    Liu, Guoqiang
    Du, Yulong
    Liu, Wenbin
    Wen, Lei
    ELECTROCHIMICA ACTA, 2016, 209 : 308 - 314
  • [6] Enhanced electrochemical performances of layered cathode material Li1.5Ni0.25Mn0.75O2.5 by coating with LiAlO2
    Liu, Yunjian
    Wang, Qiliang
    Lu, Yifan
    Yang, Bailin
    Su, Mingru
    Gao, Yanyong
    Dou, Aichun
    Pan, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 638 : 1 - 6
  • [7] Characterization of LiNi0.5Mn1.5O4 spinel electrode in the presence
    Perea, Alexis
    Zaghib, Karim
    Belanger, Daniel
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) : 2776 - 2783
  • [8] Preparation of spinel LiNi0.5Mn1.5O4 and Cr-doped LiNi0.5Mn1.5O4 cathode materials by tartaric acid assisted sol-gel method
    Wang, Songjing
    Li, Peng
    Shao, Lianyi
    Wu, Kaiqiang
    Lin, Xiaoting
    Shui, Miao
    Long, Nengbing
    Wang, Dongjie
    Shu, Jie
    CERAMICS INTERNATIONAL, 2015, 41 (01) : 1347 - 1353
  • [9] Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: A first-principles study
    Xin Xiao-Gui
    Shen Jing-Qin
    Shi Si-Qi
    CHINESE PHYSICS B, 2012, 21 (12)
  • [10] Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping
    Wang, Hailong
    Xia, Hui
    Lai, Man On
    Lu, Li
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (07) : 1539 - 1542