MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking

被引:574
作者
Hong, Zhibin [1 ]
Chen, Zhe [1 ]
Wang, Chaohui [2 ]
Mei, Xue [3 ]
Prokhorov, Danil [3 ]
Tao, Dacheng [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
[2] Univ Paris Est, UMR CNRS 8049, Lab Informat Gaspard Monge, F-77454 Marne La Vallee, France
[3] Toyota Res Inst, Ann Arbor, MI 48105 USA
来源
2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2015年
关键词
VISUAL TRACKING;
D O I
10.1109/CVPR.2015.7298675
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variations in the appearance of a tracked object, such as changes in geometry/photometry, camera viewpoint, illumination, or partial occlusion, pose a major challenge to object tracking. Here, we adopt cognitive psychology principles to design a flexible representation that can adapt to changes in object appearance during tracking. Inspired by the well-known Atkinson-Shiffrin Memory Model, we propose MUlti-Store Tracker (MUSTer), a dual-component approach consisting of short-and long-term memory stores to process target appearance memories. A powerful and efficient Integrated Correlation Filter (ICF) is employed in the short-term store for short-term tracking. The integrated long-term component, which is based on keypoint matching-tracking and RANSAC estimation, can interact with the long-term memory and provide additional information for output control. MUSTer was extensively evaluated on the CVPR2013 Online Object Tracking Benchmark (OOTB) and ALOV++ datasets. The experimental results demonstrated the superior performance of MUSTer in comparison with other state-of-art trackers.
引用
收藏
页码:749 / 758
页数:10
相关论文
共 51 条
  • [1] [Anonymous], 2003, Multiple view geometry in computer vision
  • [2] Atkinson R. C., 1968, PSYCHOL LEARN MOTIV, V2, P89, DOI [DOI 10.1016/S0079-7421(08)60422-3, 10.1016/s0079-7421(08)60422-3]
  • [3] Support vector tracking
    Avidan, S
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) : 1064 - 1072
  • [4] Ensemble tracking
    Avidan, Shai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (02) : 261 - 271
  • [5] Robust Object Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1619 - 1632
  • [6] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [7] Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model
    Cehovin, Luka
    Kristan, Matej
    Leonardis, Ales
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (04) : 941 - 953
  • [8] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [9] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [10] Dinh TB, 2011, PROC CVPR IEEE, P1177, DOI 10.1109/CVPR.2011.5995733