GEODETIC NUMBER VERSUS HULL NUMBER IN P3-CONVEXITY

被引:20
作者
Centeno, C. C. [1 ,2 ]
Penso, L. D. [3 ]
Rautenbach, D. [3 ]
de SA, V. G. Pereira [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, NCE, Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, BR-21945 Rio De Janeiro, RJ, Brazil
[3] Univ Ulm, Inst Optimierung & Operat Res, D-89069 Ulm, Germany
关键词
hull number; geodetic number; P-3-convexity; irreversible 2-threshold processes; ORDER; 3; GRAPHS; PERCOLATION; COALITIONS; PATHS;
D O I
10.1137/110859014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the graphs G for which the hull number h(G) and the geodetic number g(G) with respect to P-3-convexity coincide. These two parameters correspond to the minimum cardinality of a set U of vertices of G such that the simple expansion process which iteratively adds to U all vertices outside of U having two neighbors in U produces the whole vertex set of G either eventually or after one iteration, respectively. We establish numerous structural properties of the graphs G with h(G) = g(G), allowing for the constructive characterization as well as the efficient recognition of all such graphs that are triangle-free. Furthermore, we characterize-in terms of forbidden induced subgraphs-the graphs G that satisfy h(G') = g(G') for every induced subgraph G' of G.
引用
收藏
页码:717 / 731
页数:15
相关论文
共 16 条
[1]   Random Majority Percolation [J].
Balister, Paul ;
Bollobas, Bela ;
Johnson, J. Robert ;
Walters, Mark .
RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (03) :315-340
[2]   Sharp thresholds in Bootstrap percolation [J].
Balogh, J ;
Bollobás, B .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 326 (3-4) :305-312
[3]   ON THE CARATHEODORY NUMBER FOR THE CONVEXITY OF PATHS OF ORDER THREE [J].
Barbosa, Rommel M. ;
Coelho, Erika M. M. ;
Dourado, Mitre C. ;
Rautenbach, Dieter ;
Szwarcfiter, Jayme L. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (03) :929-939
[4]   The power of small coalitions in graphs [J].
Bermond, JC ;
Bond, J ;
Peleg, D ;
Perennes, S .
DISCRETE APPLIED MATHEMATICS, 2003, 127 (03) :399-414
[5]  
Centeno CC, 2010, DISCRETE MATH THEOR, V12, P175
[6]   Irreversible conversion of graphs [J].
Centeno, Carmen C. ;
Dourado, Mitre C. ;
Penso, Lucia Draque ;
Rautenbach, Dieter ;
Szwarcfiter, Jayme L. .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) :3693-3700
[7]   An upper bound on the P3-Radon number [J].
Dourado, Mitre C. ;
Rautenbach, Dieter ;
dos Santos, Vinicius Fernandes ;
Schaefer, Philipp M. ;
Szwarcfiter, Jayme L. ;
Toman, Alexandre .
DISCRETE MATHEMATICS, 2012, 312 (16) :2433-2437
[8]   Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion [J].
Dreyer, Paul A., Jr. ;
Roberts, Fred S. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) :1615-1627
[9]  
Erdo P., 1972, Algebra Univers., V2, P238
[10]  
HAYNES W., 1998, FUNDAMENTALS DOMINAT