Broadband scattering of the solar spectrum by spherical metal nanoparticles

被引:42
作者
Temple, Tristan L. [1 ]
Bagnall, Darren M. [1 ]
机构
[1] Univ Southampton, Nano Grp, Southampton SO17 1BJ, Hants, England
来源
PROGRESS IN PHOTOVOLTAICS | 2013年 / 21卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
plasmonics; light trapping; metal nanoparticles; SURFACE-PLASMON RESONANCE; OPTICAL-PROPERTIES; ABSORPTION; SIZE; DEPENDENCE; ARRAYS; CELLS; SHAPE; PAIRS;
D O I
10.1002/pip.1237
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Metal nanoparticles offer the possibility of improved light trapping in solar cells, but careful design is required to maximise scattering and minimise parasitic absorption across the wavelength range of interest. We present an analysis of the broadband scattering and absorption characteristics of spherical metal nanoparticles, optimized for either crystalline silicon (c-Si) or amorphous silicon (a-Si:H) solar cells. A random two-dimensional array of optimally sized Ag spheres can scatter over 97% of the AM1.5 spectrum from 400 to 1100nm. Larger particles are required for c-Si devices than a-Si:H due to the increased spectral range, with optimum particle sizes ranging from 60nm for a-Si:H to 116nm for c-Si. Positioning the particles at the rear of the solar cell decreases absorption losses because these principally occur at short wavelengths. Increasing the refractive index of the surrounding medium beyond the optimum value, which is 1.0 for a-Si:H and 1.6 for c-Si, shifts absorption to longer wavelengths and decreases scattering at short wavelengths. Ag nanoparticles scatter more of the solar spectrum than Au, Cu or Al nanoparticles. Of these other metals, Al can only be considered for a-Si:H applications due to high absorption in the near-infrared, whereas Au and Cu can only be considered for the rear of c-Si devices due to high absorption in the ultraviolet (UV) and visible. In general, we demonstrate the importance of considering the broadband optical properties of metal nanoparticles for photovoltaic applications. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:600 / 611
页数:12
相关论文
共 40 条
[1]   Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells [J].
Akimov, Yu A. ;
Koh, W. S. .
NANOTECHNOLOGY, 2010, 21 (23)
[2]   Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes [J].
Akimov, Yu. A. ;
Koh, W. S. ;
Ostrikov, K. .
OPTICS EXPRESS, 2009, 17 (12) :10195-10205
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Comparing experiment and theory in plasmonics [J].
Barnes, W. L. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (11)
[5]   Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells [J].
Beck, F. J. ;
Mokkapati, S. ;
Polman, A. ;
Catchpole, K. R. .
APPLIED PHYSICS LETTERS, 2010, 96 (03)
[6]  
BIRD RE, 1986, J CLIM APPL METEOROL, V25, P87, DOI 10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO
[7]  
2
[8]  
Bohren C.F., 1983, ABSORPTION SCATTERIN, P477
[9]   HOW CAN A PARTICLE ABSORB MORE THAN THE LIGHT INCIDENT ON IT [J].
BOHREN, CF .
AMERICAN JOURNAL OF PHYSICS, 1983, 51 (04) :323-327
[10]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)