Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys

被引:41
作者
Dayal, P. [1 ]
Bhattacharyya, D. [1 ]
Mook, W. M. [2 ]
Fu, E. G. [3 ]
Wang, Y. -Q [3 ]
Carr, D. G. [1 ]
Anderoglu, O. [3 ]
Mara, N. A. [2 ]
Misra, A. [2 ]
Harrison, R. P. [1 ]
Edwards, L. [1 ]
机构
[1] Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia
[2] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
关键词
Helium - Vanadium alloys - Zirconium alloys - Ion implantation - Titanium alloys - Aluminum alloys - Hardness - Ternary alloys;
D O I
10.1016/j.jnucmat.2013.02.078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the authors have investigated the combined effect of a double layer of implantation on four different metallic alloys, ODS steel MA957, Zircaloy-4, Ti-6Al-4V titanium alloy and stainless steel 316, by ions of two different species - He and Ar - on the hardening of the surface as measured by nanoindentation. The data was collected for a large number of indentations using the Continuous Stiffness Method or "CSM" mode, applying the indents on the implanted surface. Careful analysis of the data in the present investigations show that the relative hardening due to individual implantation layers can be used to obtain an estimate of the relative hardening effect of a combination of two separate implanted layers of two different species. This combined hardness was found to lie between the square root of the sum of the squares of individual hardening effects, (Delta H-A(2) + Delta H-B(2))(0.5) as the lower limit and the sum of the individual hardening effects, (Delta H-A + Delta H-B) as the upper limit, within errors, for all depths measured. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 2011, MATLAB
[2]   The atomic-scale modeling of dislocation-obstacle interactions in irradiated metals [J].
Bacon, D. J. ;
Osetsky, Yu. N. .
JOM, 2007, 59 (04) :40-45
[3]   On the relationship between plastic zone radius and maximum depth during nanoindentation [J].
Chen, J. ;
Bull, S. J. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (07) :4289-4293
[4]   DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES [J].
FOREMAN, AJE ;
MAKIN, MJ .
CANADIAN JOURNAL OF PHYSICS, 1967, 45 (2P2) :511-&
[5]  
Haggmark L.G., 1980, NUCL INSTRUMENTS MET, V137, P1
[6]  
Harrison R. P., 2006, IAEA TECHN M DEV CHA
[7]   An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation [J].
Hosemann, P. ;
Swadener, J. G. ;
Kiener, D. ;
Was, G. S. ;
Maloy, S. A. ;
Li, N. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 375 (01) :135-143
[8]   Nanoscale characterization of HT-9 exposed to lead bismuth eutectic at 550 °C for 3000 h [J].
Hosemann, P. ;
Hawley, M. E. ;
Koury, D. ;
Welch, J. ;
Johnson, A. L. ;
Mori, G. ;
Li, N. ;
Maloy, S. A. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 381 (03) :211-215
[9]   Issues to consider using nano indentation on shallow ion beam irradiated materials [J].
Hosemann, Peter ;
Kiener, Daniel ;
Wang, Yongqiang ;
Maloy, Stuart A. .
JOURNAL OF NUCLEAR MATERIALS, 2012, 425 (1-3) :136-139
[10]  
IAEA, 51 IAEA GEN C 007