Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn
被引:85
|
作者:
Lee, Hwang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Geog, London, ON N6A 3K7, CanadaUniv Western Ontario, Dept Geog, London, ON N6A 3K7, Canada
Lee, Hwang
[1
]
Wang, Jinfei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Geog, London, ON N6A 3K7, Canada
Univ Western Ontario, Inst Earth & Space Explorat, London, ON N6A 3K7, CanadaUniv Western Ontario, Dept Geog, London, ON N6A 3K7, Canada
Wang, Jinfei
[1
,2
]
Leblon, Brigitte
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Brunswick, Fac Forestry & Environm Management, Fredericton, NB E3B 5A3, CanadaUniv Western Ontario, Dept Geog, London, ON N6A 3K7, Canada
Leblon, Brigitte
[3
]
机构:
[1] Univ Western Ontario, Dept Geog, London, ON N6A 3K7, Canada
[2] Univ Western Ontario, Inst Earth & Space Explorat, London, ON N6A 3K7, Canada
[3] Univ New Brunswick, Fac Forestry & Environm Management, Fredericton, NB E3B 5A3, Canada
The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m(2)) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R(2)of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m(2). Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date.
机构:
China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
Zhang, Changsai
Yi, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Xuhuai Reg Inst Agr Sci, Xuzhou 221131, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
Yi, Yuan
Wang, Lijuan
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Geog Geomat & Planning, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
Wang, Lijuan
Zhang, Xuewei
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
Zhang, Xuewei
Chen, Shuo
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
Chen, Shuo
Su, Zaixing
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Xuhuai Reg Inst Agr Sci, Xuzhou 221131, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
Su, Zaixing
Zhang, Shuxia
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Peoples R China
机构:
Zhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Inst Dafo Longjing Tea, Xinchang 312500, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Wang, Shu-Mao
Ma, Jun-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Lishui Bur Agr & Rural Affairs, Lishui 323000, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Ma, Jun-Hui
Zhao, Zhu-Meng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Hainan Inst, Sanya 572000, Hainan, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Zhao, Zhu-Meng
Yang, Hong-Zhi-Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Yang, Hong-Zhi-Yuan
Xuan, Yi-Min
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Xuan, Yi-Min
Ouyang, Jia-Xue
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Ouyang, Jia-Xue
Fan, Dong-Mei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang A&F Univ, Coll Tea Sci & Tea Culture, Hangzhou 310000, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Fan, Dong-Mei
Yu, Jin-Feng
论文数: 0引用数: 0
h-index: 0
机构:
Inst Dafo Longjing Tea, Xinchang 312500, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Yu, Jin-Feng
Wang, Xiao-Chang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China
Inst Dafo Longjing Tea, Xinchang 312500, Zhejiang, Peoples R ChinaZhejiang Univ, Tea Res Inst, Hangzhou 310000, Zhejiang, Peoples R China