A Third-Order of Accuracy Difference Scheme for the Bitsadze-Samarskii Type Nonlocal Boundary Value Problem

被引:3
作者
Ashyralyev, Allaberen [1 ]
Tetikoglu, Fatma Songul Ozesenli [1 ]
机构
[1] Fatih Univ, Dept Math, TR-34500 Istanbul, Turkey
来源
FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012) | 2012年 / 1470卷
关键词
Bitsadze-Samarskii problem; Elliptic equation; Nonlocal boundary value problems; Difference scheme; WELL-POSEDNESS;
D O I
10.1063/1.4747639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bitsadze-Samarskii type nonlocal boundary value problem for the multidimensional elliptic equation is considered. The third order of accuracy stable difference scheme for the approximate solution of this problem is presented. Stability, almost coercive stability and coercive stability for the solution of third order of approximation are obtained.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1969, SOV MATH DOKL
[2]  
[Anonymous], 2003, COMPUT METH APPL MAT
[4]  
Ashyralyev A, 2004, NEW DIFFERENCE SCHEM, V148
[6]   On well-posedness of difference schemes for abstract elliptic problems in Lp([0, T]; E) spaces [J].
Ashyralyev, Allaberen ;
Cuevas, Claudio ;
Piskarev, Sergey .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (1-2) :43-65
[7]   The Numerical Solution of the Bitsadze-Samarskii Nonlocal Boundary Value Problems with the Dirichlet-Neumann Condition [J].
Ashyralyev, Allaberen ;
Ozturk, Elif .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[8]  
Gorbachuk V. L., 1984, BOUNDARY VALUE PROBL
[9]  
Gordeziani D. G., 1970, ABSTR REP I APPL MAT, V2, P38
[10]  
Gordeziani D. G., 1972, B GEORGIAN ACAD SCI, V67, P1