Estimation of distribution functions in measurement error models

被引:15
作者
Dattner, I. [1 ]
Reiser, B. [2 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Univ Haifa, Dept Stat, IL-31905 Haifa, Israel
关键词
Adaptive estimator; Deconvolution; Error in variables; Prevalence; DECONVOLUTION; LIMITS;
D O I
10.1016/j.jspi.2012.09.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many practical problems are related to the pointwise estimation of distribution functions when data contain measurement errors. Motivation for these problems comes from diverse fields such as astronomy, reliability, quality control, public health and survey data. Recently. Dattner et al. (2011) showed that an estimator based on a direct inversion formula for distribution functions has nice properties when the tail of the characteristic function of the measurement error distribution decays polynomially. In this paper we derive theoretical properties for this estimator for the case where the error distribution is smoother and study its finite sample behavior for different error distributions. Our method is data-driven in the sense that we use only known information, namely, the error distribution and the data. Application of the estimator to estimating hypertension prevalence based on real data is also examined. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:479 / 493
页数:15
相关论文
共 30 条
[1]   Accurate test limits under nonnormal measurement error [J].
Albers, W ;
Kallenberg, WCM ;
Otten, GD .
METRIKA, 1998, 47 (01) :1-33
[2]  
Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn, DOI [10.1201/9781420010138, DOI 10.1201/9781420010138]
[3]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[4]   Deconvolution of a distribution function [J].
Cordy, CB ;
Thomas, DR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1459-1465
[5]   ON DECONVOLUTION OF DISTRIBUTION FUNCTIONS [J].
Dattner, I. ;
Goldenshluger, A. ;
Juditsky, A. .
ANNALS OF STATISTICS, 2011, 39 (05) :2477-2501
[6]  
Eddington A. S., 1913, MNRAS, V73, P359
[7]  
Eltinge JL, 1999, STAT SINICA, V9, P425
[8]   DECONVOLUTION WITH SUPERSMOOTH DISTRIBUTIONS [J].
FAN, JQ .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (02) :155-169
[9]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[10]   A CONSISTENT ESTIMATOR OF A COMPONENT OF A CONVOLUTION [J].
GAFFEY, WR .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (01) :198-205