The Morphology of Battery Electrodes with the Focus of the Conductive Additives Paths

被引:50
作者
Indrikova, Maira [1 ]
Grunwald, Stephan [2 ]
Golks, Frederik [1 ]
Netz, Andreas [1 ]
Westphal, Bastian [3 ]
Kwade, Arno [3 ]
机构
[1] Robert Bosch GmbH, Dept Technol & Surface Engn, Corp Sect Res & Adv Engn, D-71272 Renningen, Germany
[2] Univ Cincinnati, Coll Engn & Appl Sci, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA
[3] TU Braunschweig, Inst Particle Technol, D-38104 Braunschweig, Germany
关键词
LIFEPO4 CATHODE MATERIAL; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; TRANSPORT; LICOO2; DISCHARGE; BEHAVIOR; CHARGE; SIZE; CO;
D O I
10.1149/2.0441510jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Model experiments, in which active material in the electrode is replaced with insulating ceramic particles, are used to show the importance of pure conductive additives network. Ceramic particles are chosen with particle diameter of 10 and 3 mu m. Coatings with similar loading and varying levels of carbon black, graphite and polyvinylidene fluoride are fabricated, analyzed regarding electronic conductivity and investigated with a new "quasi" in-situ SEM compression method. The electronic conductivity strongly depends on porosity, inactive material amount and distribution. SEM/EDX images showed that coatings with 10 mu m particles have higher porosity and denser network of conductive additives compared to 3 mu m particles. Therefore, the conductive additives and binder amount should be adjusted based on the particle size distribution. (C) 2015 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2021 / A2025
页数:5
相关论文
共 43 条
[1]   Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique [J].
Amin, R. ;
Maier, J. ;
Balaya, P. ;
Chen, D. P. ;
Lin, C. T. .
SOLID STATE IONICS, 2008, 179 (27-32) :1683-1687
[2]   Effect of surfactants on the electrochemical behavior of LiFePO4 cathode material for lithium ion batteries [J].
Bazzi, K. ;
Mandal, B. P. ;
Nazri, M. ;
Naik, V. M. ;
Garg, V. K. ;
Oliveira, A. C. ;
Vaishnava, P. P. ;
Nazri, G. A. ;
Naik, R. .
JOURNAL OF POWER SOURCES, 2014, 265 :67-74
[3]   A novel carbon-coated LiCoO2 as cathode material for lithium ion battery [J].
Cao, Q. ;
Zhang, H. P. ;
Wang, G. J. ;
Xia, Q. ;
Wu, Y. P. ;
Wu, H. Q. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1228-1232
[4]   Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J].
Chen, Y. -H. ;
Wang, C. -W. ;
Zhang, X. ;
Sastry, A. M. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2851-2862
[5]   Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process [J].
Doyle, M ;
Newman, J .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (07) :846-856
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]   Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance [J].
Du, Wenbo ;
Gupta, Amit ;
Zhang, Xiangchun ;
Sastry, Ann Marie ;
Shyy, Wei .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (17-18) :3552-3561
[8]   Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni):: Insights into defect association, transport mechanisms, and doping behavior [J].
Fisher, Craig A. J. ;
Prieto, Veluz M. Hart ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2008, 20 (18) :5907-5915
[9]   Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J].
Gao, Fei ;
Tang, Zhiyuan .
ELECTROCHIMICA ACTA, 2008, 53 (15) :5071-5075
[10]   Mathematical modeling of lithium-ion and nickel battery systems [J].
Gomadam, PM ;
Weidner, JW ;
Dougal, RA ;
White, RE .
JOURNAL OF POWER SOURCES, 2002, 110 (02) :267-284