Entanglement of linear cluster states in terms of averaged entropies

被引:21
作者
Cao Ye [1 ,2 ]
Li Hui [1 ,2 ]
Long GuiLu [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2013年 / 58卷 / 01期
基金
中国国家自然科学基金;
关键词
average subsystem entropies; cluster states; multiple entropy measures; quantum entanglement;
D O I
10.1007/s11434-012-5604-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An entanglement measure, multiple entropy measures (MEMS) was proposed recently by using the geometric mean of partial entropies over all possible i-body combinations of the quantum system. In this work, we study the average subsystem von Neumann entropies of the linear cluster state and investigated the quantum entanglement of linear cluster states in terms of MEMS. Explicit results with specific particle numbers are calculated, and some analytical results are given for systems with arbitrary particle numbers. Compared with other example quantum states such as the GHZ states and W states, the linear cluster states are "more entangled" in terms of MEMS, namely their averaged entropies are larger than the GHZ states and W states.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 56 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Variational characterizations of separability and entanglement of formation [J].
Audenaert, K ;
Verstraete, F ;
De Moor, B .
PHYSICAL REVIEW A, 2001, 64 (05) :13
[3]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[6]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[7]   On maximal entanglement between two pairs in four-qubit pure states [J].
Brierley, S. ;
Higuchi, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) :8455-8465
[8]   Information-theoretic measure of genuine multiqubit entanglement [J].
Cai, Jian-Ming ;
Zhou, Zheng-Wei ;
Zhou, Xing-Xiang ;
Guo, Guang-Can .
PHYSICAL REVIEW A, 2006, 74 (04)
[9]   Entropy product measure for multipartite pure states [J].
Cao Wancang ;
Liu Dan ;
Pan Feng ;
Long Guilu .
SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2006, 49 (05) :606-615
[10]   Realization of superposition and entanglement of coherent and squeezed states in circuit quantum electrodynamics [J].
Chen ChangYong ;
Sun Qing .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (05) :930-935