Tomography of cool giant and supergiant star atmospheres I. Validation of the method

被引:14
作者
Kravchenko, K. [1 ]
Van Eck, S. [1 ]
Chiavassa, A. [2 ]
Jorissen, A. [1 ]
Freytag, B. [3 ]
Plez, B. [4 ]
机构
[1] Univ Libre Bruxelles, Inst Astron & Astrophys, CP 226,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Cote dAzur, Observ Cote dAzur, CNRS, CS 34229, F-06304 Nice 4, France
[3] Uppsala Univ, Dept Phys & Astron, Regementsvagen 1,Box 516, S-75120 Uppsala, Sweden
[4] Univ Montpellier II, CNRS, Lab Univers & Particules Montpellier, F-34095 Montpellier 05, France
关键词
stars: atmospheres; stars: AGB and post-AGB; supergiants; line: formation; radiative transfer; techniques: spectroscopic; PERIOD VARIABLE-STARS; ENVELOPE TOMOGRAPHY; STELLAR ATMOSPHERES; MODEL ATMOSPHERES; SPECTRAL-LINES; DEPTHS;
D O I
10.1051/0004-6361/201731530
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Cool giant and supergiant star atmospheres are characterized by complex velocity fields originating from convection and pulsation processes which are not fully understood yet. The velocity fields impact the formation of spectral lines, which thus contain information on the dynamics of stellar atmospheres. Aims. The tomographic method allows to recover the distribution of the component of the velocity field projected on the line of sight at different optical depths in the stellar atmosphere. The computation of the contribution function to the line depression aims at correctly identifying the depth of formation of spectral lines in order to construct numerical masks probing spectral lines forming at different optical depths. Methods. The tomographic method is applied to one-dimensional (1D) model atmospheres and to a realistic three-dimensional (3D) radiative hydrodynamics simulation performed with CO5BOLD in order to compare their spectral line formation depths and velocity fields. Results. In 1D model atmospheres, each spectral line forms in a restricted range of optical depths. On the other hand, in 3D simulations, the line formation depths are spread in the atmosphere mainly because of temperature and density inhomogeneities. Comparison of cross-correlation function profiles obtained from 3D synthetic spectra with velocities from the 3D simulation shows that the tomographic method correctly recovers the distribution of the velocity component projected on the line of sight in the atmosphere.
引用
收藏
页数:11
相关论文
共 19 条
[1]  
Albrow MD, 1996, MON NOT R ASTRON SOC, V278, P337
[2]  
Alvarez R, 2000, ASTRON ASTROPHYS, V362, P655
[3]   Envelope tomography of long-period variable stars - III. Line-doubling frequency among Mira stars [J].
Alvarez, R ;
Jorissen, A ;
Plez, B ;
Gillet, D ;
Fokin, A ;
Dedecker, M .
ASTRONOMY & ASTROPHYSICS, 2001, 379 (01) :305-322
[4]   Envelope tomography of long-period variable stars - II. Method [J].
Alvarez, R ;
Jorissen, A ;
Plez, B ;
Gillet, D ;
Fokin, A ;
Dedecker, M .
ASTRONOMY & ASTROPHYSICS, 2001, 379 (01) :288-304
[6]   The solar chemical composition [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques .
NUCLEAR PHYSICS A, 2006, 777 :1-4
[7]   ELODIE: A spectrograph for accurate radial velocity measurements [J].
Baranne, A ;
Queloz, D ;
Mayor, M ;
Adrianzyk, G ;
Knispel, G ;
Kohler, D ;
Lacroix, D ;
Meunier, JP ;
Rimbaud, G ;
Vin, A .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 119 (02) :373-390
[8]   Radiative hydrodynamics simulations of red supergiant stars IV. Gray versus non-gray opacities [J].
Chiavassa, A. ;
Freytag, B. ;
Masseron, T. ;
Plez, B. .
ASTRONOMY & ASTROPHYSICS, 2011, 535
[9]   Radiative hydrodynamics simulations of red supergiant stars I. interpretation of interferometric observations [J].
Chiavassa, A. ;
Plez, B. ;
Josselin, E. ;
Freytag, B. .
ASTRONOMY & ASTROPHYSICS, 2009, 506 (03) :1351-1365
[10]   Simulations of stellar convection with CO5BOLD [J].
Freytag, B. ;
Steffen, M. ;
Ludwig, H. -G. ;
Wedemeyer-Bohm, S. ;
Schaffenberger, W. ;
Steiner, O. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (03) :919-959