Diagonal quotient surfaces

被引:8
作者
Kani, E
Schanz, W
机构
[1] Dept. of Mathematics and Statistics, Queen's University, Kingston
[2] 65191 Wiesbaden
关键词
Local Invariant; Elliptic Surface; Continue Fraction Expansion; Chern Number; Projection Formula;
D O I
10.1007/BF02677459
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective curve which admits a finite group G of automorphisms. The purpose of this paper is to analyze the geometry of the associated diagonal quotient surface Z(X,G,alpha) = Delta(alpha)\(X x X), where Delta(alpha) less than or equal to G x G denotes the diagonal subgroup twisted by an automorphism alpha is an element of Aut(G). In particular, we calculate some of the numerical invariants of its minimal desingularization (Z) over tilde(X,G,alpha) such as its Betti and Chern numbers and establish some criteria for determining its place in the Enriques-Kodaira classification table.
引用
收藏
页码:67 / 108
页数:42
相关论文
共 22 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]  
[Anonymous], 1988, HILBERT MODULAR SURF
[3]  
[Anonymous], 1965, Geometric Invariant Theory
[4]  
Barth W., 1984, COMPACT COMPLEX SURF
[5]  
Chevalley C., 1934, ABH MATH SEM HAMBURG, V10, P358, DOI DOI 10.1007/BF02940687
[6]  
Curtis C. W., 1981, METHODS REPRESENTATI, VI
[7]  
FREITAG E, 1988, COHOMOLOGY WEIL CONJ
[8]  
GRIFFITHS P, 1976, INVENT MATH, V35
[9]  
Grothendieck A., 1957, Tohoku Math. J., V9, P119, DOI [10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]
[10]  
Hartshorne R., 1977, ALGEBRAIC GEOM