Skew left braces with non-trivial annihilator

被引:30
作者
Catino, Francesco [1 ]
Colazzo, Ilaria [1 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Via Prov Lecce Arnesano, I-73100 Lecce, Italy
关键词
Skew brace; brace; F-brace; quantum Yang-Baxter equation; set-theoretical solution; affine group; regular subgroup; ideal extension of skew braces; SET-THEORETICAL SOLUTIONS; REGULAR SUBGROUPS; BAXTER;
D O I
10.1142/S0219498819500336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the class of all skew left braces with non-trivial annihilator through ideal extension of a skew left brace. The ideal extension of skew left braces is a generalization to the non-abelian case of the extension of left braces provided by Bachiller in [D. Bachiller, Extensions, matched products, and simple braces, braces, J. Pure Appl. Algebra 222 (2018) 1670-1691].
引用
收藏
页数:23
相关论文
共 13 条
[1]   Extensions, matched products, and simple braces [J].
Bachiller, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (07) :1670-1691
[2]   Semi-braces and the Yang Baxter equation [J].
Catino, Francesco ;
Colazzo, Ilaria ;
Stefanelli, Paola .
JOURNAL OF ALGEBRA, 2017, 483 :163-187
[3]   ON REGULAR SUBGROUPS OF THE AFFINE GROUP [J].
Catino, Francesco ;
Colazzo, Ilaria ;
Stefanelli, Paola .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (01) :76-85
[4]   REGULAR SUBGROUPS OF THE AFFINE GROUP AND RADICAL CIRCLE ALGEBRAS [J].
Catino, Francesco ;
Rizzo, Roberto .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (01) :103-107
[5]   Braces and the Yang-Baxter Equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) :101-116
[6]  
DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1
[7]   Set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P ;
Schedler, T ;
Soloviev, A .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :169-209
[8]   Semigroups of I-type [J].
Gateva-Ivanova, T ;
Van den Bergh, M .
JOURNAL OF ALGEBRA, 1998, 206 (01) :97-112
[9]   SKEW BRACES AND THE YANG BAXTER EQUATION [J].
Guarnieri, L. ;
Vendramin, L. .
MATHEMATICS OF COMPUTATION, 2017, 86 (307) :2519-2534
[10]  
Lu JH, 2000, DUKE MATH J, V104, P1