Wavelet Characterization of Weighted Spaces

被引:51
作者
Garcia-Cuerva, J. [1 ]
Martell, J. M. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
wavelets; H-p spaces; A(p) weights; vector-valued Calderon-Zygmund operators; Littlewood-Paley theory; unconditional bases;
D O I
10.1007/BF02921965
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization of weighted Hardy spaces H-P(w), valid for a rather large collection of wavelets, 0 < p <= 1, and weights w in the Muckenhoupt class A(infinity). We improve the previously known results and adopt a systematic point of view based upon the theory of vector-valued Calderon-Zygmund operators. Some consequences of this characterization are also given, like the criterion for a wavelet to give an unconditional basis and a criterion for membership into the space from the size of the wavelet coefficients.
引用
收藏
页码:241 / 264
页数:24
相关论文
共 22 条
[1]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[2]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[3]  
Botchkariev SV., 1974, MAT SBORNIK, V98, P3
[4]  
CARLESON L, 1980, B SCI MATH, V104, P405
[5]   SPLINE CHARACTERIZATIONS OF H-1 [J].
CHANG, SYA ;
CIESIELSKI, Z .
STUDIA MATHEMATICA, 1983, 75 (02) :183-192
[6]   PROPERTIES OF ORTHONORMAL FRANKLIN SYSTEM .2. [J].
CIESIELSKI, Z .
STUDIA MATHEMATICA, 1966, 27 (03) :289-+
[7]  
CIESIELSKI Z, 1963, STUD MATH, V23, P141, DOI 10.4064/sm-23-2-141-157
[8]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[9]   CALDERON-ZYGMUND THEORY FOR OPERATOR-VALUED KERNELS [J].
DEFRANCIA, JLR ;
RUIZ, FJ ;
TORREA, JL .
ADVANCES IN MATHEMATICS, 1986, 62 (01) :7-48
[10]  
Garc?a-Cuerva J., 1979, DISS MATH, V162, P63