Watt's mean value theorem and Carmichael numbers

被引:21
作者
Harman, Glyn [1 ]
机构
[1] Univ London, Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
mean value theorems; Dirichlet characters; L-functions; primes in arithmetic progressions; Carmichael numbers; sieve methods; Buchstab's identity;
D O I
10.1142/S1793042108001316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that Watt's new mean value theorem on sums of character sums can be included in the method described in the author's recent work [6] to show that the number of Carmichael numbers up to x exceeds x(1/3) for all large x. This is done by comparing the application of Watt's original version of his mean value theorem [8] to the problem of primes in short intervals [3] with the problem of finding "small" primes in an arithmetic progression.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 9 条
[1]  
Baker RC, 1998, ACTA ARITH, V83, P331
[2]   The difference between consecutive primes, II [J].
Baker, RC ;
Harman, G ;
Pintz, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :532-562
[3]  
Chernick J., 1935, B AM MATH SOC, V45, P269
[4]  
Granville A, 2002, MATH COMPUT, V71, P883, DOI 10.1090/S0025-5718-01-01355-2
[5]   On the number of Carmichael numbers up to x [J].
Harman, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :641-650
[6]  
Pinch R. G. E., CARMICHAEL NUMBERS 1
[7]   KLOOSTERMAN SUMS AND A MEAN-VALUE FOR DIRICHLET POLYNOMIALS [J].
WATT, N .
JOURNAL OF NUMBER THEORY, 1995, 53 (01) :179-210
[8]   Bounds for a mean value of character sums [J].
Watt, Nigel .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) :249-293
[9]  
[No title captured]