Computational screening of metal-organic frameworks for CO2 separation

被引:18
作者
Jiang, Jianwen [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
关键词
Metal-organic frameworks; Computations; Screening; CO2; separation; Adsorbents; Membranes; CARBON-DIOXIDE CAPTURE; STRUCTURE-PROPERTY RELATIONSHIPS; POROUS MATERIALS; FORCE-FIELD; GAS; SEQUESTRATION; ADSORPTION; CHEMISTRY; DESIGN; READY;
D O I
10.1016/j.cogsc.2019.02.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) have been considered as a new generation of adsorbents and membranes for CO2 separation. Along with enormous experiments reported, computations have played an increasingly important role in unraveling microscopic insights that are otherwise experimentally inaccessible. Before 2012, most of the computations were focused on the microscopic understanding of CO2 separation in individual or a handful of MOFs. With about 80,000 MOFs synthesized to date and theoretically unlimited number of structures, there has been considerable interest in computational screening of MOFs to identify the top MOFs for CO2 separation. This minireview summarizes the recent screening studies, highlights the achievements, and discusses the challenges and possible future directions in this vibrant field.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 45 条
[1]   Quantitative Structure-Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification [J].
Aghaji, Mohammad Zein ;
Fernandez, Michael ;
Boyd, Peter G. ;
Daff, Thomas D. ;
Woo, Tom K. .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (27) :4505-4511
[2]   Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Azar, Ayda Nemati Vesali ;
Velioglu, Sadiye ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (20) :17257-17268
[3]   Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning [J].
Anderson, Ryther ;
Rodgers, Jacob ;
Argueta, Edwin ;
Biong, Achay ;
Gomez-Gualdron, Diego A. .
CHEMISTRY OF MATERIALS, 2018, 30 (18) :6325-6337
[4]  
[Anonymous], 2002, Understanding molecular simulation: from algorithms to applications
[5]  
[Anonymous], 2007, FAC HARD TRUTHS EN C
[6]   High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture [J].
Avci, Gokay ;
Velioglu, Sadiye ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) :33693-33706
[7]   Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture [J].
Bae, Youn-Sang ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11586-11596
[8]   High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes [J].
Budhathoki, Samir ;
Ajayi, Olukayode ;
Steckel, Janice A. ;
Wilmer, Christopher E. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) :1255-1264
[9]   Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals [J].
Chung, Yongchul G. ;
Camp, Jeffrey ;
Haranczyk, Maciej ;
Sikora, Benjamin J. ;
Bury, Wojciech ;
Krungleviciute, Vaiva ;
Yildirim, Taner ;
Farha, Omar K. ;
Sholl, David S. ;
Snurr, Randall Q. .
CHEMISTRY OF MATERIALS, 2014, 26 (21) :6185-6192
[10]   Materials design by evolutionary optimization of functional groups in metal-organic frameworks [J].
Collins, Sean P. ;
Daff, Thomas D. ;
Piotrkowski, Sarah S. ;
Woo, Tom K. .
SCIENCE ADVANCES, 2016, 2 (11)