REGULARITY ISSUES FOR COSSERAT CONTINUA AND p-HARMONIC MAPS

被引:9
作者
Gastel, Andreas [1 ]
机构
[1] Univ Duisburg Essen, D-45117 Essen, Germany
关键词
Cosserat elasticity; micropolar elasticity; regularity; harmonic maps; EXISTENCE;
D O I
10.1137/18M1201858
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For minimizers in a geometrically nonlinear Cosserat model for micropolar elasticity of continua, we prove interior Holder regularity, up to isolated singular points that may be possible if the exponent p from the model is 2 or in (32/15, 3). The obstacle to full continuity turns out to be the existence of certain minimizing homogeneous p-harmonic maps to S-3. For those, we slightly improve existing regularity theorems in order to achieve our result on the Cosserat model.
引用
收藏
页码:4287 / 4310
页数:24
相关论文
共 20 条
[1]   ON THE SINGULAR SET OF STATIONARY HARMONIC MAPS [J].
BETHUEL, F .
MANUSCRIPTA MATHEMATICA, 1993, 78 (04) :417-443
[2]   LIOUVILLE PROPERTIES FOR p-HARMONIC MAPS WITH FINITE q-ENERGY [J].
Chang, Shu-Cheng ;
Chen, Jui-Tang ;
Wei, Shihshu Walter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) :787-825
[3]  
Cosserat E., 1909, Thorie des corps dformables
[5]   P-HARMONIC OBSTACLE PROBLEMS .1. PARTIAL REGULARITY THEORY [J].
FUCHS, M .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1990, 156 :127-158
[6]   FINITE ACTION SOLUTIONS OF THE NON-LINEAR SIGMA-MODEL [J].
GARBER, WD ;
RUIJSENAARS, SNM ;
SEILER, E ;
BURNS, D .
ANNALS OF PHYSICS, 1979, 119 (02) :305-325
[7]  
Giaquinta M., 2012, APPUNTI SC NORM SUPE, V11
[8]   MAPPINGS MINIMIZING THE LP NORM OF THE GRADIENT [J].
HARDT, R ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (05) :555-588
[10]   Regularity of minimizing p-harmonic maps into the sphere [J].
Nakauchi, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (02) :1051-1057