Modular counting of rational points over finite fields

被引:14
作者
Wan, Daqing [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
p-adic modular counting of rational points; sparse polynomials over finite fields; Stickelberger theorem; Gross-Koblitz formula;
D O I
10.1007/s10208-007-0245-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F-q be the finite field of q elements, where q = p(h). Let f(x) be a polynomial over F-q in n variables with m nonzero terms. Let N(f) denote the number of solutions of f(x) = 0 with coordinates in F-q. In this paper we give a deterministic algorithm which computes the reduction of N(f) modulo p(b) in O(n(8m)((h+b)p)) bit operations. This is singly exponential in each of the parameters {h, b, p}, answering affirmatively an open problem proposed by Gopalan, Guruswami, and Lipton.
引用
收藏
页码:597 / 605
页数:9
相关论文
共 13 条
[1]  
Beigel R., 1994, Computational Complexity, V4, P350, DOI 10.1007/BF01263423
[2]  
Copalan P, 2006, LECT NOTES COMPUT SC, V3887, P544
[3]  
EHRENFEUCHT A, 1990, 8543CS ICSI
[4]   Counting curves and their projections [J].
Gathen, JV ;
Karpinski, M ;
Shparlinski, I .
COMPUTATIONAL COMPLEXITY, 1996, 6 (01) :64-99
[5]   GAUSS SUMS AND THE P-ADIC GAMMA-FUNCTION [J].
GROSS, BH ;
KOBLITZ, N .
ANNALS OF MATHEMATICS, 1979, 109 (03) :569-581
[6]  
LAUDER A, 2007, ALGORITHMIC NUMBER T
[7]   Counting solutions to equations in many variables over finite fields [J].
Lauder, AGB .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2004, 4 (03) :221-267
[8]   PP IS AS HARD AS THE POLYNOMIAL-TIME HIERARCHY [J].
TODA, S .
SIAM JOURNAL ON COMPUTING, 1991, 20 (05) :865-877
[9]  
WAN D, 2007, ALGORITHMIC NUMBER T
[10]  
Wan D, 2006, AMSIP STUD ADV MATH, V38, P159