Comparison of surface effects in bare and titanium oxide coated CoFe2O4 nanoparticles

被引:9
|
作者
Khan, M. Zareef [1 ]
Nadeem, K. [1 ]
Zeb, F. [1 ]
Abbas, H. [1 ]
Ali, Basit [1 ]
Letofsky-Papst, I [2 ]
机构
[1] Int Islamic Univ, Dept Phys, Nanosci & Technol Lab, Islamabad, Pakistan
[2] Graz Univ Technol, Inst Electron Microscopy, Steyrergasse 17, A-8010 Graz, Austria
关键词
Cobalt ferrite; Surface effects; Titanium oxide; Magnetic properties; Comparison; COBALT-FERRITE NANOPARTICLES; MAGNETIC-PROPERTIES; SPIN DISORDER; NANOCOMPOSITE; FABRICATION;
D O I
10.1016/j.solidstatesciences.2020.106186
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Comparison of surface effects in bare and titanium oxide coated CoFe2O4 nanoparticles has been done with the help of magnetic measurements. The average crystallite size was 31 for bare CoFe2O4 nanoparticles. For titanium oxide coated nanoparticles, the CoFe2O4 and titanium oxide phases have crystallite size of 46 and 38 nm, respectively. TEM images confirmed the coating behavior of titanium oxide on CoFe2O4 nanoparticles. Both kinds of nanoparticles were in magnetically blocked state at room temperature as evident by ZFC/FC measurements. The effective anisotropy constant was calculated from simulated ZFC curve and found higher for bare CoFe2O4 nanoparticles due to large surface spin disorder and strong interparticle interactions. In modified Bloch's law fit for M-s vs. T data, the higher value of Bloch's constant for titanium oxide coated CoFe2O4 nanoparticles demonstrates the weak exchange coupling constant J. The Kneller's law fit for H-c vs. T data showed a lower value of constant alpha for titanium oxide coated CoFe(2)O(4 )nanoparticles which is due to the reduced surface magnetic and weak interparticle interactions. In summary, crystalline titanium oxide coating on CoFe(2)O(4 )nanoparticles showed reduction in surface spin disorder and weaken interparticle interactions.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] COMPARATIVE STUDY OF PREPARATION METHODS OF FERRITES NANOPARTICLES CoFe2O4
    Briceno, S.
    Sanchez, Y.
    Braemer-Escamilla, W.
    Silva, P.
    Rodriguez, J. P.
    Ramos, M. A.
    Plaza, E.
    ACTA MICROSCOPICA, 2013, 22 (01): : 62 - 68
  • [32] Surface spin effects in La-doped CoFe2O4 nanoparticles prepared by microemulsion route
    Burianova, Simona
    Vejpravova, Jana Poltierova
    Holec, Petr
    Plocek, Jiri
    Niznansky, Daniel
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
  • [33] Preparation and characterization of CoFe2O4 and CoFe2O4@Albumen nanoparticles for biomedical applications
    Qasim, Mohd
    Asghar, Khushnuma
    Das, Dibakar
    CERAMICS INTERNATIONAL, 2019, 45 (18) : 24971 - 24981
  • [34] Superparamagnetic relaxation in CoFe2O4 nanoparticles
    Choi, EJ
    Ahn, Y
    Kim, S
    An, DH
    Kang, KU
    Lee, BG
    Baek, KS
    Oak, HN
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 262 (02) : L198 - L202
  • [35] Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies
    Cannas, Carla
    Ardu, Andrea
    Peddis, Davide
    Sangregorio, Claudio
    Piccaluga, Giorgio
    Musinu, Anna
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 343 (02) : 415 - 422
  • [36] Ethanol Gas Sensing of Mn-Doped CoFe2O4 Nanoparticles
    Devi, P. Indra
    Rajkumar, N.
    Renganathan, B.
    Sastikumar, D.
    Ramachandran, K.
    IEEE SENSORS JOURNAL, 2011, 11 (06) : 1395 - 1402
  • [37] Bioinspired ferromagnetic CoFe2O4 nanoparticles: Potential pharmaceutical and medical applications
    Ansari, Mohammad Azam
    Govindasamy, Rajakumar
    Begum, Mohammed Yasmin
    Ghazwani, Mohammed
    Alqahtani, Ali
    Alomary, Mohammad N.
    Jamous, Yahya F.
    Alyahya, Sami A.
    Asiri, Sarah
    Khan, Firdos Alam
    Almessiere, Munirah A.
    Baykal, Abdulhadi
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [38] Hydrothermal Synthesis of CoFe2O4 Nanoparticles and their Magnetic Properties
    Zhang, Fan
    Su, Ruiliang
    Shi, Lizhi
    Liu, Yang
    Chen, Yanna
    Wang, Zhanjie
    ADVANCES IN TEXTILE ENGINEERING AND MATERIALS III, PTS 1 AND 2, 2013, 821-822 : 1358 - +
  • [39] Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles
    Rathore, Deepshikha
    Kurchania, Rajnish
    Pandey, R. K.
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2014, 21 (04) : 408 - 414
  • [40] Influence of manganese substitution on structural and magnetic properties of CoFe2O4 nanoparticles
    Adeela, N.
    Maaz, K.
    Khan, U.
    Karim, S.
    Nisar, A.
    Ahmad, M.
    Ali, G.
    Han, X. F.
    Duan, J. L.
    Liu, J.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 639 : 533 - 540