Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance

被引:46
作者
Lukacisinova, Marta [1 ,2 ,3 ]
Fernando, Booshini [1 ]
Bollenbach, Tobias [1 ]
机构
[1] Univ Cologne, Inst Biol Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Technion Israel Inst Technol, Dept Biol, IL-32000 Haifa, Israel
基金
奥地利科学基金会;
关键词
MULTIDRUG EFFLUX PUMP; ESCHERICHIA-COLI; DRUG-RESISTANCE; BENEFICIAL MUTATIONS; DIMINISHING RETURNS; ACRAB; TOLC; MECHANISMS; INHIBITORS; POTENTIATE;
D O I
10.1038/s41467-020-16932-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics. The antibiotic resistance crisis calls for new ways of restricting the ability of bacteria to evolve resistance. Here, Lukaiinova et al. perform highly controlled evolution experiments in E. coli strains to identify genetic perturbations that strongly limit the evolution of antibiotic resistance through epistasis.
引用
收藏
页数:14
相关论文
共 92 条
[1]   Identity and Function of a Large Gene Network Underlying Mutagenic Repair of DNA Breaks [J].
Al Mamun, Abu Amar M. ;
Lombardo, Mary-Jane ;
Shee, Chandan ;
Lisewski, Andreas M. ;
Gonzalez, Caleb ;
Lin, Dongxu ;
Nehring, Ralf B. ;
Saint-Ruf, Claude ;
Gibson, Janet L. ;
Frisch, Ryan L. ;
Lichtarge, Olivier ;
Hastings, P. J. ;
Rosenberg, Susan M. .
SCIENCE, 2012, 338 (6112) :1344-1348
[2]   RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance [J].
Alam, Md Kausar ;
Alhhazmi, Areej ;
DeCoteau, John F. ;
Luo, Yu ;
Geyer, C. Ronald .
CELL CHEMICAL BIOLOGY, 2016, 23 (03) :381-391
[3]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[4]   The mar regulon:: multiple resistance to antibiotics and other toxic chemicals [J].
Alekshun, MN ;
Levy, SB .
TRENDS IN MICROBIOLOGY, 1999, 7 (10) :410-413
[5]   Mechanisms and selection of evolvability: experimental evidence [J].
Arenas, Carolina Diaz ;
Cooper, Tim F. .
FEMS MICROBIOLOGY REVIEWS, 2013, 37 (04) :572-582
[6]   Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy [J].
Ayhan, Dilay Hazel ;
Tamer, Yusuf Talha ;
Akbar, Mohammed ;
Bailey, Stacey M. ;
Wong, Michael ;
Daly, Seth M. ;
Greenberg, David E. ;
Toprak, Erdal .
PLOS BIOLOGY, 2016, 14 (09)
[7]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[8]   Beyond dose: Pulsed antibiotic treatment schedules can maintain individual benefit while reducing resistance [J].
Baker, Christopher M. ;
Ferrari, Matthew J. ;
Shea, Katriona .
SCIENTIFIC REPORTS, 2018, 8
[9]   Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq [J].
Barrick, Jeffrey E. ;
Colburn, Geoffrey ;
Deatherage, Daniel E. ;
Traverse, Charles C. ;
Strand, Matthew D. ;
Borges, Jordan J. ;
Knoester, David B. ;
Reba, Aaron ;
Meyer, Austin G. .
BMC GENOMICS, 2014, 15
[10]   Multidrug evolutionary strategies to reverse antibiotic resistance [J].
Baym, Michael ;
Stone, Laura K. ;
Kishony, Roy .
SCIENCE, 2016, 351 (6268)