Low Mach number limit of global solutions to 3-D compressible nematic liquid crystal flows with Dirichlet boundary condition

被引:3
作者
Zeng, Lan [1 ]
Ni, Guoxi [2 ]
Ai, Xiao [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
compressible nematic liquid crystal equations; Dirichlet boundary condition; low mach number limit; INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS; STOKES-MAXWELL SYSTEM; CLASSICAL-SOLUTIONS; WEAK SOLUTIONS; TIME BEHAVIOR; EXISTENCE; CONVERGENCE; ENERGY;
D O I
10.1002/mma.5499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the uniform estimates of strong solutions in the Mach number epsilon and t is an element of [0,infinity) for the compressible nematic liquid crystal flows in a 3-D bounded domain omega subset of R3, provided the initial data are small enough and the density is close to the constant state. Here, we consider the case that the velocity field satisfies the Dirichlet boundary condition. Based on the uniform estimates, we obtain the global convergence of the compressible nematic liquid crystal system to the incompressible nematic liquid crystals system as the Mach number tends to zero.
引用
收藏
页码:2053 / 2068
页数:16
相关论文
共 36 条
  • [1] Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals
    Bie, Qunyi
    Cui, Haibo
    Wang, Qiru
    Yao, Zheng-An
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [2] Bourguignon J.P., 1974, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
  • [3] Incompressible limit of the compressible nematic liquid crystal flow
    Ding, Shijin
    Huang, Jinrui
    Wen, Huanyao
    Zi, Ruizhao
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (07) : 1711 - 1756
  • [4] COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN 1-D
    Ding, Shijin
    Lin, Junyu
    Wang, Changyou
    Wen, Huanyao
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) : 539 - 563
  • [5] WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE
    Ding, Shijin
    Wang, Changyou
    Wen, Huanyao
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (02): : 357 - 371
  • [6] CONSERVATION LAWS FOR LIQUID CRYSTALS
    ERICKSEN, JL
    [J]. TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 : 23 - 34
  • [7] ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
  • [8] Convergence of the Full Compressible Navier-Stokes-Maxwell System to the Incompressible Magnetohydrodynamic Equations in a Bounded Domain II: Global Existence Case
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 359 - 378
  • [9] CONVERGENCE OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM TO THE INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED DOMAIN
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    [J]. KINETIC AND RELATED MODELS, 2016, 9 (03) : 443 - 453
  • [10] Friedman A., 2008, Partial Differential Equations of Parabolic Type