Commissioning and validation of commercial deformable image registration software for adaptive contouring

被引:11
|
作者
Jamema, Swamidas V. [1 ]
Phurailatpam, Reena [1 ]
Paul, Siji N. [1 ]
Joshi, Kishore [1 ]
Deshpande, D. D. [2 ]
机构
[1] Tata Mem Hosp, ACTREC, Dept Radiat Oncol, Navi Mumbai 410210, Maharashtra, India
[2] Tata Mem Hosp, Tata Mem Ctr, Dept Med Phys, Bombay 400012, Maharashtra, India
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2018年 / 47卷
关键词
Validation; Deformable image registration; Commissioning; TREATMENT PLANNING SYSTEM; RADIATION-THERAPY; QUALITY-ASSURANCE; RADIOTHERAPY; PHANTOM; PELVIS; LEVEL; NECK; HEAD;
D O I
10.1016/j.ejmp.2018.01.013
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To report the commissioning and validation of deformable image registration(DIR) software for adaptive contouring. Methods: DIR (SmartAdapt (R) v13.6) was validated using two methods namely contour propagation accuracy and landmark tracking, using physical phantoms and clinical images of various disease sites. Five in-house made phantoms with various known deformations and a set of 10 virtual phantoms were used. Displacement in lateral, anterio-posterior (AP) and superior-inferior (SI) direction were evaluated for various organs and compared with the ground truth. Four clinical sites namely, brain (n=5), HN (n=9), cervix (n=18) and prostate (n=23) were used. Organs were manually delineated by a radiation oncologist, compared with the deformable image registration (DIR) generated contours. 3D slicer v4.5.0.1 was used to analyze Dice Similarity Co-efficient (DSC), shift in centre of mass (COM) and Hausdorff distances Hf-95%/avg. Results: Mean (SD) DSC, Hf-95% (mm), Hf-avg (mm) and COM of all the phantoms 1-5 were 0.84 (0.2) mm, 5.1 (7.4) mm, 1.6 (2.2) mm, and 1.6 (0.2) mm respectively. Phantom-5 had the largest deformation as compared to phantoms 1-4, and hence had suboptimal indices. The virtual phantom resulted in consistent results for all the ROIs investigated. Contours propagated for brain patients were better with a high DSC score (0.91 (0.04)) as compared to other sites (HN: 0.84, prostate: 0.81 and cervix 0.77). A similar trend was seen in other indices too. The accuracy of propagated contours is limited for complex deformations that include large volume and shape change of bladder and rectum respectively. Visual validation of the propagated contours is recommended for clinical implementation. Conclusion: The DIR algorithm was commissioned and validated for adaptive contouring.
引用
收藏
页码:1 / 8
页数:8
相关论文
empty
未找到相关数据