A Novel Particle Filter based Object Tracking Framework via the Combination of State and Observation Optimization

被引:0
作者
Luo, Xudong [1 ]
Ye, Long [1 ]
Zhong, Wei [1 ]
Zhang, Qin [1 ]
机构
[1] Commun Univ China, Dept Elect Informat Engn, Beijing, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER, NETWORKS AND COMMUNICATION ENGINEERING (ICCNCE 2013) | 2013年 / 30卷
关键词
particle filter; object tracking; feature optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using particle filter to figure visual object tracking, a key problem is to choose appropriate image features as the observation model. In this paper, we present a novel particle filter based object tracking framework via the combination of state and observation optimization. We apply the technique to articulated human movement tracking. Result demonstrates the effectiveness of our method in solving the tracking problem like self-occlusion and cluttered background.
引用
收藏
页码:487 / 490
页数:4
相关论文
共 9 条
  • [1] AlacCormick J., 2000, PROCEEDING ECCV, V2, P3, DOI DOI 10.1007/3-540-45053-X1
  • [2] Multicue HMM-UKF for real-time contour tracking
    Chen, Yunqiang
    Rui, Yong
    Huang, Thomas S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (09) : 1525 - 1529
  • [3] Comaniciu D, 1997, IEEE COMP SOC C COMP
  • [4] Huang A., 2005, A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Non-Linear and Non-Gaussian Process
  • [5] Ramos Sanchez M.U., 1997, 1 INT C AVBPA 97 CRA
  • [6] Visual tracking via bag of features
    Yang, F.
    Lu, H.
    Zhang, W.
    Yang, G.
    [J]. IET IMAGE PROCESSING, 2012, 6 (02) : 115 - 128
  • [7] Ye Long, 2008, P IEEE INT C MULT EX
  • [8] Yin Z., 2008, IEEE WORKSH APPL COM
  • [9] Zhixu Zhao, IEEE WORKSH APPL COM