A Novel Image Registration Algorithm for Remote Sensing Under Affine Transformation

被引:52
作者
Song, Zhili [1 ]
Zhou, Shuigeng [2 ,3 ]
Guan, Jihong [4 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci, Shanghai 201418, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[4] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201802, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2014年 / 52卷 / 08期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Histogram; image registration; remote sensing; robust estimation; triangle area representation (TAR); REPRESENTATION; SEGMENTATION; CONSENSUS; RANSAC; SIFT;
D O I
10.1109/TGRS.2013.2285814
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the help of the histogram of triangle area representation (TAR) and feature matching strategy, a new effective image registration approach for remote sensing is proposed in this paper. This approach is based on a robust transformation parameter estimation algorithm called the histogram of TAR sample consensus (HTSC in short). The HTSC algorithm can replace the existing random sample consensus (RANSAC) and progressive sample consensus (PROSAC) methods that have been widely used in the transformation parameter estimation step of remote-sensing image registration, for it can efficiently calculate the consensus set with a higher accuracy. This paper lays down a new way to build a robust transformation parameter estimator based on the invariance constraint for remote-sensing image registration. Analogous to the two types of well-known existing transformation parameter estimation methods RANSAC and PROSAC, HTSC can serve as a new type (or the third type if we treat RANSAC and PROSAC as the first and the second types) of such methods, as it adopts the transformation-invariance information to find the consensus.
引用
收藏
页码:4895 / 4912
页数:18
相关论文
共 48 条
[1]   Shape retrieval using triangle-area representation and dynamic space warping [J].
Alajlan, Naif ;
El Rube, Ibrahim ;
Kamel, Mohamed S. ;
Freeman, George .
PATTERN RECOGNITION, 2007, 40 (07) :1911-1920
[2]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[3]   Shape matching and object recognition using shape contexts [J].
Belongie, S ;
Malik, J ;
Puzicha, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :509-522
[4]   Subpixel edge location based on orthogonal Fourier-Mellin moments [J].
Bin, T. J. ;
Lei, Ao ;
Jiwen, Cui ;
Wenjing, Kang ;
Dandan, Liu .
IMAGE AND VISION COMPUTING, 2008, 26 (04) :563-569
[5]   A SURVEY OF IMAGE REGISTRATION TECHNIQUES [J].
BROWN, LG .
COMPUTING SURVEYS, 1992, 24 (04) :325-376
[6]  
Capel D., 2005, Proc. BMVC, P629
[7]   Matching with PROSAC - Progressive Sample Consensus [J].
Chum, O ;
Matas, J .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :220-226
[8]  
Chum O, 2003, LECT NOTES COMPUT SC, V2781, P236
[9]   Optimal Randomized RANSAC [J].
Chum, Ondrej ;
Matas, Jiri .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (08) :1472-1482
[10]   Registration Using Robust Kernel Principal Component for Object-Based Change Detection [J].
Ding, Mingtao ;
Tian, Zheng ;
Jin, Zi ;
Xu, Min ;
Cao, Chunxiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) :761-765