On the number of Fourier coefficient that determine a Hilbert modular form

被引:6
作者
Baba, S [1 ]
Chakraborty, K
Petridis, YN
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[2] Harish Chandra Res Inst, Sch Math, Allahabad 211019, Uttar Pradesh, India
关键词
Hilbert modular forms; Fourier coefficients;
D O I
10.1090/S0002-9939-02-06609-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the number of Fourier coefficients that determine a Hilbert modular cusp form of arbitrary weight and level. The method is spectral ( Rayleigh quotient) and avoids the use of the maximum principle.
引用
收藏
页码:2497 / 2502
页数:6
相关论文
共 11 条
[1]  
[Anonymous], CONT MATH
[2]  
Freitag E., 1990, Hilbert Modular Forms, DOI DOI 10.1007/978-3-662-02638-0
[3]  
HUNTLEY J, 1991, P AM MATH SOC, V111, P1
[4]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464
[5]   ANALYTIC PROOF OF THE STRONG MULTIPLICITY ONE THEOREM [J].
MORENO, CJ .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (01) :163-206
[6]  
MURTY MR, 1997, LONDON MATH SOC LECT, V247
[7]  
PIATETSKYSHAPIRO II, 1957, DOKL AKAD NAUK SSSR+, V113, P980
[8]   DAS EIGENWERTPROBLEM DER AUTOMORPHEN FORMEN IN DER HYPERBOLISCHEN EBENE .2. [J].
ROELCKE, W .
MATHEMATISCHE ANNALEN, 1967, 168 :261-&
[9]   DAS EIGENWERTPROBLEM DER AUTOMORPHEN FORMEN IN DER HYPERBOLISCHEN EBENE .I. [J].
ROELCKE, W .
MATHEMATISCHE ANNALEN, 1966, 167 (04) :292-&
[10]   ON DISCONTINUOUS GROUPS OPERATING ON PRODUCT OF UPPER HALF PLANES [J].
SHIMIZU, H .
ANNALS OF MATHEMATICS, 1963, 77 (01) :33-&