Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

被引:33
作者
Sheng, Zheng [1 ]
Wang, Jun [2 ]
Zhou, Shudao [1 ,3 ]
Zhou, Bihua [2 ]
机构
[1] PLA Univ Sci & Technol, Coll Meteorol & Oceanog, Nanjing 211101, Jiangsu, Peoples R China
[2] PLA Univ Sci & Technol, Natl Def Key Lab Lightning Protect & Electromagne, Nanjing 210007, Jiangsu, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SYNCHRONIZATION; OPTIMIZATION;
D O I
10.1063/1.4867989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[3]   Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems [J].
Ahmadi, Mohamadreza ;
Mojallali, Hamed .
CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) :1108-1120
[4]   A Levy flight for light [J].
Barthelemy, Pierre ;
Bertolotti, Jacopo ;
Wiersma, Diederik S. .
NATURE, 2008, 453 (7194) :495-498
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]  
Bruce L. G., 1986, NAV RES LOG, V33, P261
[7]   Measurements of time-dependent CP violation in B0→ωKS0, f0(980)KS0, KS0π0 and K+K-KS0 decays [J].
Chao, Y. ;
Chen, K. -F. ;
Miyake, H. ;
Tajima, O. ;
Trabelsi, K. ;
Abe, K. ;
Abe, K. ;
Adachi, I. ;
Aihara, H. ;
Anipko, D. ;
Bakich, A. M. ;
Barberio, E. ;
Bitenc, U. ;
Bizjak, I. ;
Blyth, S. ;
Bondar, A. ;
Bracko, M. ;
Browder, T. E. ;
Chang, M. -C. ;
Chang, P. ;
Chen, A. ;
Chen, W. T. ;
Cheon, B. G. ;
Chistov, R. ;
Choi, Y. ;
Choi, Y. K. ;
Cole, S. ;
Dalseno, J. ;
Danilov, M. ;
Dash, M. ;
Dragic, J. ;
Drutskoy, A. ;
Eidelman, S. ;
Fratina, S. ;
Gabyshev, N. ;
Golob, B. ;
Ha, H. ;
Haba, J. ;
Hara, K. ;
Hara, T. ;
Hastings, N. C. ;
Hayashii, H. ;
Hazumi, M. ;
Heffernan, D. ;
Higuchi, T. ;
Hokuue, T. ;
Hoshi, Y. ;
Hou, W. -S. ;
Hsiung, Y. B. ;
Iijima, T. .
PHYSICAL REVIEW D, 2007, 76 (09)
[8]   A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms [J].
Civicioglu, Pinar ;
Besdok, Erkan .
ARTIFICIAL INTELLIGENCE REVIEW, 2013, 39 (04) :315-346
[9]   An approach of parameter estimation for a chaotic system based on genetic algorithm [J].
Dai, D ;
Ma, XK ;
Li, FC ;
You, Y .
ACTA PHYSICA SINICA, 2002, 51 (11) :2459-2462
[10]   Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems (vol 29, pg 17, 2013) [J].
Gandomi, Amir Hossein ;
Yang, Xin-She ;
Alavi, Amir Hossein .
ENGINEERING WITH COMPUTERS, 2013, 29 (02) :245-245