Self-adaptive parameters in differential evolution based on fitness performance with a perturbation strategy

被引:9
作者
Cheng, Chen-Yang [1 ]
Li, Shu-Fen [2 ]
Lin, Yu-Cheng [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Ind Engn & Management, Taipei, Taiwan
[2] Tunghai Univ, Dept Ind Engn & Enterprise Informat, Taichung, Taiwan
关键词
Self-adaptive parameters; Differential evolution; Perturbation strategy; Parameter adjusting; Fitness performance; ALGORITHM;
D O I
10.1007/s00500-017-2958-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution (DE) algorithms have been used widely to solve optimization problems and practical cases and have demonstrated high efficiency, performing favorably using only a few parameters. Compared with other traditional algorithms, DE algorithms perform well when used to solve continuous problems. To obtain an approximate solution using DE, it is critical that appropriate parameter values are selected. However, selecting and dynamically tuning the parameter values during evolution are not easy tasks because the values depend significantly on the problem to be solved. To address these issues, this study presents an enhanced DE algorithm with self-adaptive adjustable parameters and a perturbation strategy based on individual fitness performance. Compared with two existing DE algorithms, the proposed algorithm can solve six benchmark functions and has both high efficiency and stability.
引用
收藏
页码:3113 / 3128
页数:16
相关论文
共 43 条
[1]   A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms [J].
Aleti, Aldeida ;
Moser, Irene .
ACM COMPUTING SURVEYS, 2016, 49 (03)
[2]  
[Anonymous], 2005, PROBLEM DEFINITIONS
[3]   Improved Particle Swarm Optimization with a Collective Local Unimodal Search for Continuous Optimization Problems [J].
Arasomwan, Martins Akugbe ;
Adewumi, Aderemi Oluyinka .
SCIENTIFIC WORLD JOURNAL, 2014,
[4]   Performance comparison of self-adaptive and adaptive differential evolution algorithms [J].
Brest, Janez ;
Boskovic, Borko ;
Greiner, Saso ;
Zumer, Viljem ;
Maucec, Mirjam Sepesy .
SOFT COMPUTING, 2007, 11 (07) :617-629
[5]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[6]  
Chen CA, 2015, IEEE C EVOL COMPUTAT, P401, DOI 10.1109/CEC.2015.7256918
[7]  
Das S, 2005, IEEE C EVOL COMPUTAT, P1691
[8]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[9]   An adaptive invasion-based model for distributed Differential Evolution [J].
De Falco, I. ;
Della Cioppa, A. ;
Maisto, D. ;
Scafuri, U. ;
Tarantino, E. .
INFORMATION SCIENCES, 2014, 278 :653-672
[10]   Analyzing convergence performance of evolutionary algorithms: A statistical approach [J].
Derrac, Joaquin ;
Garcia, Salvador ;
Hui, Sheldon ;
Suganthan, Ponnuthurai Nagaratnam ;
Herrera, Francisco .
INFORMATION SCIENCES, 2014, 289 :41-58