Potential for spin-based information processing in a thin-film molecular semiconductor

被引:254
作者
Warner, Marc [1 ,2 ]
Din, Salahud [3 ,4 ]
Tupitsyn, Igor S. [5 ]
Morley, Gavin W. [1 ,2 ]
Stoneham, A. Marshall [1 ,2 ]
Gardener, Jules A. [1 ,2 ]
Wu, Zhenlin [3 ,4 ]
Fisher, Andrew J. [1 ,2 ]
Heutz, Sandrine [3 ,4 ]
Kay, Christopher W. M. [6 ,7 ]
Aeppli, Gabriel [1 ,2 ]
机构
[1] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[2] UCL, Dept Phys & Astron, London WC1H 0AH, England
[3] Univ London Imperial Coll Sci Technol & Med, London Ctr Nanotechnol, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[5] Univ British Columbia, Pacific Inst Theoret Phys, Vancouver, BC V6T 1Z1, Canada
[6] UCL, Inst Struct & Mol Biol, London WC1E 6BT, England
[7] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
COPPER PHTHALOCYANINE; RELAXATION; TRANSPORT; CRYSTAL; EPR; TEMPERATURE; COHERENCE; MAGNETS; SILICON; ECHO;
D O I
10.1038/nature12597
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organic semiconductors are studied intensively for applications in electronics and optics(1), and even spin-based information technology, or spintronics(2). Fundamental quantities in spintronics are the population relaxation time (T-1) and the phase memory time (T-2): T-1 measures the lifetime of a classical bit, in this case embodied by a spin oriented either parallel or antiparallel to an external magnetic field, and T-2 measures the corresponding lifetime of a quantum bit, encoded in the phase of the quantum state. Here we establish that these times are surprisingly long for a common, low-cost and chemically modifiable organic semiconductor, the blue pigment copper phthalocyanine(3), in easily processed thin-film form of the type used for device fabrication. At 5 K, a temperature reachable using inexpensive closed-cycle refrigerators, T-1 and T-2 are respectively 59 ms and 2.6 mu s, and at 80 K, which is just above the boiling point of liquid nitrogen, they are respectively 10 ms and 1 ms, demonstrating that the performance of thin-film copper phthalocyanine is superior to that of single-molecule magnets over the same temperature range(4). T-2 is more than two orders of magnitude greater than the duration of the spin manipulation pulses, which suggests that copper phthalocyanine holds promise for quantum information processing, and the long T-1 indicates possibilities for medium-term storage of classical bits in all-organic devices on plastic substrates.
引用
收藏
页码:504 / +
页数:9
相关论文
共 36 条
[1]  
Abragam A., 1970, ELECT PARAMAGNETIC R
[2]   Will spin-relaxation times in molecular magnets permit quantum information processing? [J].
Ardavan, Arzhang ;
Rival, Olivier ;
Morton, John J. L. ;
Blundell, Stephen J. ;
Tyryshkin, Alexei M. ;
Timco, Grigore A. ;
Winpenny, Richard E. P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[3]   ON ORIGIN OF UNPAIRED ELECTRONS IN METAL-FREE PHTHALOCYANINE [J].
ASSOUR, JM ;
HARRISON, SE .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (04) :872-&
[4]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[5]   Organic field-effect transistors with high mobility based on copper phthalocyanine [J].
Bao, Z ;
Lovinger, AJ ;
Dodabalapur, A .
APPLIED PHYSICS LETTERS, 1996, 69 (20) :3066-3068
[6]   Dynamics and spin relaxation of tempone in a host crystal. An ENDOR, high field EPR and electron spin echo study [J].
Barbon, A ;
Brustolon, M ;
Maniero, AL ;
Romanelli, M ;
Brunel, LC .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (17) :4015-4023
[7]   Quantum oscillations in a molecular magnet [J].
Bertaina, S. ;
Gambarelli, S. ;
Mitra, T. ;
Tsukerblat, B. ;
Mueller, A. ;
Barbara, B. .
NATURE, 2008, 453 (7192) :203-U5
[8]  
Cinchetti M, 2009, NAT MATER, V8, P115, DOI [10.1038/nmat2334, 10.1038/NMAT2334]
[9]  
Dediu VA, 2009, NAT MATER, V8, P707, DOI [10.1038/nmat2510, 10.1038/NMAT2510]
[10]   Matrix effects on copper(II)phthalocyanine complexes. A combined continuous wave and pulse EPR and DFT study [J].
Finazzo, C ;
Calle, C ;
Stoll, S ;
Van Doorslaer, S ;
Schweiger, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (16) :1942-1953