Deep learning enabled reflective coded aperture snapshot spectral imaging

被引:15
作者
Yu, Zhenming [1 ]
Liu, Diyi [1 ]
Cheng, Liming [1 ]
Meng, Ziyi [1 ]
Zhao, Zhengxiang [1 ]
Yuan, Xin [2 ,3 ]
Xu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Westlake Univ, Res Ctr Ind Future RCIF, Hangzhou 310030, Zhejiang, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou 310030, Zhejiang, Peoples R China
来源
OPTICS EXPRESS | 2022年 / 30卷 / 26期
基金
中国国家自然科学基金;
关键词
ALGORITHMS; DESIGN; SYSTEM;
D O I
10.1364/OE.475129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coded aperture snapshot spectral imaging (CASSI) can acquire rich spatial and spectral information at ultra-high speed, which shows extensive application prospects. CASSI innovatively employed the idea of compressive sensing to capture the spatial-spectral data cube using a monochromatic detector and used reconstruction algorithms to recover the desired spatial-spectral information. Based on the optical design, CASSI currently has two different implementations: single-disperser (SD) CASSI and dual-disperser (DD) CASSI. However, SD-CASSI has poor spatial resolution naturally while DD-CASSI increases size and cost because of the extra prism. In this work, we propose a deep learning-enabled reflective coded aperture snapshot spectral imaging (R-CASSI) system, which uses a mask and a beam splitter to receive the reflected light by utilizing the reflection of the mask. The optical path design of R-CASSI makes the optical system compact, using only one prism as two dispersers. Furthermore, an encoder-decoder structure with 3D convolution kernels is built for the reconstruction, dubbed U-net-3D. The designed U-net-3D network achieves both spatial and spectral consistency, leading to state-of-the-art reconstruction results. The real data is released and can serve as a benchmark dataset to test new reconstruction algorithms.
引用
收藏
页码:46822 / 46837
页数:16
相关论文
共 47 条
  • [1] Compressive Coded Aperture Spectral Imaging
    Arce, Gonzalo R.
    Brady, David J.
    Carin, Lawrence
    Arguello, Henry
    Kittle, David S.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 105 - 115
  • [2] Shift-variant color-coded diffractive spectral imaging system
    Arguello, Henry
    Pinilla, Samuel
    Peng, Yifan
    Ikoma, Hayato
    Bacca, Jorge
    Wetzstein, Gordon
    [J]. OPTICA, 2021, 8 (11): : 1424 - 1434
  • [3] Colored Coded Aperture Design by Concentration of Measure in Compressive Spectral Imaging
    Arguello, Henry
    Arce, Gonzalo R.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1896 - 1908
  • [4] Compressive spectral image reconstruction using deep prior and low-rank tensor representation
    Bacca, Jorge
    Fonseca, Yesid
    Arguello, Henry
    [J]. APPLIED OPTICS, 2021, 60 (14) : 4197 - 4207
  • [5] Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics
    Baek, Seung-Hwan
    Ikoma, Hayato
    Jeon, Daniel S.
    Li, Yuqi
    Heidrich, Wolfgang
    Wetzstein, Gordon
    Kim, Min H.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2631 - 2640
  • [6] A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2992 - 3004
  • [7] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [8] A system for 3D modeling frescoed historical buildings with multispectral texture information
    Brusco, N.
    Capeleto, S.
    Fedel, M.
    Paviotti, A.
    Poletto, L.
    Cortelazzo, G. M.
    Tondello, G.
    [J]. MACHINE VISION AND APPLICATIONS, 2006, 17 (06) : 373 - 393
  • [9] The restricted isometry property and its implications for compressed sensing
    Candes, Emmanuel J.
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) : 589 - 592
  • [10] Near-optimal signal recovery from random projections: Universal encoding strategies?
    Candes, Emmanuel J.
    Tao, Terence
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5406 - 5425