Deep learning enabled reflective coded aperture snapshot spectral imaging

被引:21
作者
Yu, Zhenming [1 ]
Liu, Diyi [1 ]
Cheng, Liming [1 ]
Meng, Ziyi [1 ]
Zhao, Zhengxiang [1 ]
Yuan, Xin [2 ,3 ]
Xu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Westlake Univ, Res Ctr Ind Future RCIF, Hangzhou 310030, Zhejiang, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou 310030, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHMS; DESIGN; SYSTEM;
D O I
10.1364/OE.475129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coded aperture snapshot spectral imaging (CASSI) can acquire rich spatial and spectral information at ultra-high speed, which shows extensive application prospects. CASSI innovatively employed the idea of compressive sensing to capture the spatial-spectral data cube using a monochromatic detector and used reconstruction algorithms to recover the desired spatial-spectral information. Based on the optical design, CASSI currently has two different implementations: single-disperser (SD) CASSI and dual-disperser (DD) CASSI. However, SD-CASSI has poor spatial resolution naturally while DD-CASSI increases size and cost because of the extra prism. In this work, we propose a deep learning-enabled reflective coded aperture snapshot spectral imaging (R-CASSI) system, which uses a mask and a beam splitter to receive the reflected light by utilizing the reflection of the mask. The optical path design of R-CASSI makes the optical system compact, using only one prism as two dispersers. Furthermore, an encoder-decoder structure with 3D convolution kernels is built for the reconstruction, dubbed U-net-3D. The designed U-net-3D network achieves both spatial and spectral consistency, leading to state-of-the-art reconstruction results. The real data is released and can serve as a benchmark dataset to test new reconstruction algorithms.
引用
收藏
页码:46822 / 46837
页数:16
相关论文
共 47 条
[1]   Compressive Coded Aperture Spectral Imaging [J].
Arce, Gonzalo R. ;
Brady, David J. ;
Carin, Lawrence ;
Arguello, Henry ;
Kittle, David S. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :105-115
[2]   Shift-variant color-coded diffractive spectral imaging system [J].
Arguello, Henry ;
Pinilla, Samuel ;
Peng, Yifan ;
Ikoma, Hayato ;
Bacca, Jorge ;
Wetzstein, Gordon .
OPTICA, 2021, 8 (11) :1424-1434
[3]   Colored Coded Aperture Design by Concentration of Measure in Compressive Spectral Imaging [J].
Arguello, Henry ;
Arce, Gonzalo R. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) :1896-1908
[4]   Compressive spectral image reconstruction using deep prior and low-rank tensor representation [J].
Bacca, Jorge ;
Fonseca, Yesid ;
Arguello, Henry .
APPLIED OPTICS, 2021, 60 (14) :4197-4207
[5]   Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics [J].
Baek, Seung-Hwan ;
Ikoma, Hayato ;
Jeon, Daniel S. ;
Li, Yuqi ;
Heidrich, Wolfgang ;
Wetzstein, Gordon ;
Kim, Min H. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :2631-2640
[6]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   A system for 3D modeling frescoed historical buildings with multispectral texture information [J].
Brusco, N. ;
Capeleto, S. ;
Fedel, M. ;
Paviotti, A. ;
Poletto, L. ;
Cortelazzo, G. M. ;
Tondello, G. .
MACHINE VISION AND APPLICATIONS, 2006, 17 (06) :373-393
[9]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[10]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425