CT-Based Deep Learning Model for Invasiveness Classification and Micropapillary Pattern Prediction Within Lung Adenocarcinoma

被引:34
作者
Ding, Hanlin [1 ,2 ,3 ,4 ]
Xia, Wenjie [1 ,2 ,3 ,4 ]
Zhang, Lei [1 ,5 ]
Mao, Qixing [1 ,2 ,3 ,4 ]
Cao, Bowen [6 ]
Zhao, Yihang [6 ]
Xu, Lin [1 ,2 ,3 ,4 ]
Jiang, Feng [1 ,2 ,3 ,4 ]
Dong, Gaochao [1 ,3 ]
机构
[1] Nanjing Med Univ, Jiangsu Canc Hosp, Jiangsu Inst Canc Res, Affiliated Canc Hosp, Nanjing, Peoples R China
[2] Jiangsu Canc Hosp, Thorac Surg Dept, Nanjing, Peoples R China
[3] Canc Inst Jiangsu Prov, Jiangsu Key Lab Mol & Translat Canc Res, Nanjing, Peoples R China
[4] Nanjing Med Univ, Clin Coll 4, Nanjing, Peoples R China
[5] Jiangsu Canc Hosp, CT MRI Dept, Nanjing, Peoples R China
[6] Nanjing Med Univ, Clin Med Coll 1, Nanjing, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2020年 / 10卷
基金
中国国家自然科学基金;
关键词
lung adenocarcinoma; micropapillary component; computed tomography; deep learning; convolutional neural network; artificial intelligence; INTERNATIONAL-ASSOCIATION; CANCER; RESECTION; IMPACT;
D O I
10.3389/fonc.2020.01186
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective:Identification of tumor invasiveness of pulmonary adenocarcinomas before surgery is one of the most important guides to surgical planning. Additionally, preoperative diagnosis of lung adenocarcinoma with micropapillary patterns is also critical for clinical decision making. We aimed to evaluate the accuracy of deep learning models on classifying invasiveness degree and attempted to predict the micropapillary pattern in lung adenocarcinoma. Methods:The records of 291 histopathologically confirmed lung adenocarcinoma patients were retrospectively analyzed and consisted of 61 adenocarcinomain situ, 80 minimally invasive adenocarcinoma, 117 invasive adenocarcinoma, and 33 invasive adenocarcinoma with micropapillary components (>5%). We constructed two diagnostic models, the Lung-DL model and the Dense model, based on the LeNet and the DenseNet architecture, respectively. Results:For distinguishing the nodule invasiveness degree, the area under the curve (AUC) value of the diagnosis with the Lung-DL model is 0.88 and that with the Dense model is 0.86. In the prediction of the micropapillary pattern, overall accuracies of 92 and 72.91% were obtained for the Lung-DL model and the Dense model, respectively. Conclusion:Deep learning was successfully used for the invasiveness classification of pulmonary adenocarcinomas. This is also the first time that deep learning techniques have been used to predict micropapillary patterns. Both tasks can increase efficiency and assist in the creation of precise individualized treatment plans.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Development and validation of a clinical decision tool for preoperative micropapillary and solid pattern lung adenocarcinoma of CT ≤2 cm [J].
Gao, Zhen ;
Liu, Shang ;
Xiao, Han ;
Li, Meng ;
Ren, Wan-gang ;
Fen, Zhen ;
Xu, Lin ;
Peng, Zhong-min .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (12) :7607-7615
[32]   CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study [J].
Cao, Wuteng ;
Hu, Huabin ;
Guo, Jirui ;
Qin, Qiyuan ;
Lian, Yanbang ;
Li, Jiao ;
Wu, Qianyu ;
Chen, Junhong ;
Wang, Xinhua ;
Deng, Yanhong .
JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
[33]   18F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery [J].
Zhang, Gong ;
Bao, Chengkai ;
Liu, Yanzhe ;
Wang, Zizheng ;
Du, Lei ;
Zhang, Yue ;
Wang, Fei ;
Xu, Baixuan ;
Zhou, S. Kevin ;
Liu, Rong .
EJNMMI RESEARCH, 2023, 13 (01)
[34]   Identifying invasiveness to aid lung adenocarcinoma diagnosis using deep learning and pathomics [J].
Du, Hai ;
Wang, Xiulin ;
Wang, Kaifeng ;
Ai, Qi ;
Shen, Jing ;
Zhu, Ruiping ;
Wu, Jianlin .
SCIENTIFIC REPORTS, 2025, 15 (01)
[35]   Establishment and visualization of a model based on high-resolution CT qualitative and quantitative features for prediction of micropapillary or solid components in invasive lung adenocarcinoma [J].
Dong, Hao ;
Wang, Xinbin ;
Qiu, Yonggang ;
Lou, Cuncheng ;
Ye, Yinfeng ;
Feng, Han ;
Ye, Xiaodan ;
Chen, Dihong .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (12) :10519-10530
[36]   A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma [J].
Li, Chuanjun ;
Jiang, Changsi ;
Gong, Jingshan ;
Wu, Xiaotao ;
Luo, Yan ;
Sun, Guopin .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (10) :1984-1993
[37]   CT-based deep multi-label learning prediction model for outcome in patients with oropharyngeal squamous cell carcinoma [J].
Ma, Baoqiang ;
Guo, Jiapan ;
Zhai, Tian-Tian ;
van der Schaaf, Arjen ;
Steenbakkers, Roel J. H. M. ;
van Dijk, Lisanne V. ;
Both, Stefan ;
Langendijk, Johannes A. ;
Zhang, Weichuan ;
Qiu, Bingjiang ;
van Ooijen, Peter M. A. ;
Sijtsema, Nanna M. .
MEDICAL PHYSICS, 2023, 50 (10) :6190-6200
[38]   Enhancing Immunotherapy Response Prediction in Metastatic Lung Adenocarcinoma: Leveraging Shallow and Deep Learning with CT-Based Radiomics across Single and Multiple Tumor Sites [J].
Masson-Grehaigne, Cecile ;
Lafon, Mathilde ;
Palussiere, Jean ;
Leroy, Laura ;
Bonhomme, Benjamin ;
Jambon, Eva ;
Italiano, Antoine ;
Cousin, Sophie ;
Crombe, Amandine .
CANCERS, 2024, 16 (13)
[39]   Early prediction of adverse outcomes in liver cirrhosis using a CT-based multimodal deep learning model [J].
Xie, Nanai ;
Liang, Yiwen ;
Luo, Zixin ;
Hu, Jing ;
Ge, Ruiquan ;
Wan, Xiang ;
Wang, Changmiao ;
Zou, Guannan ;
Guo, Feng ;
Jiang, Yi .
ABDOMINAL RADIOLOGY, 2025,
[40]   3D deep learning versus the current methods for predicting tumor invasiveness of lung adenocarcinoma based on high-resolution computed tomography images [J].
Lv, Yilv ;
Wei, Ying ;
Xu, Kuan ;
Zhang, Xiaobin ;
Hua, Rong ;
Huang, Jia ;
Li, Min ;
Tang, Cui ;
Yang, Long ;
Liu, Bingchun ;
Yuan, Yonggang ;
Li, Siwen ;
Gao, Yaozong ;
Zhang, Xianjie ;
Wu, Yifan ;
Han, Yuchen ;
Shang, Zhanxian ;
Yu, Hong ;
Zhan, Yiqiang ;
Shi, Feng ;
Ye, Bo .
FRONTIERS IN ONCOLOGY, 2022, 12