Network analysis of time series under the constraint of fixed nearest neighbors

被引:13
作者
Dong, Yan [1 ]
Huang, Wenwen [1 ]
Liu, Zonghua [1 ]
Guan, Shuguang [1 ]
机构
[1] E China Normal Univ, Dept Phys, Shanghai 200241, Peoples R China
关键词
Complex networks; Time series analysis; Phase space reconstruction; VISIBILITY GRAPH; COMPLEX NETWORKS; MOTIFS;
D O I
10.1016/j.physa.2012.10.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we carried out network analysis for typical time series, such as periodic signals, chaotic maps, Gaussian white noise, and fractal Brownian motions. By reconstructing the phase space for a given time series, we can generate a network under the constraint of fixed nearest neighbors. The mapped networks are then analyzed from both the statistical properties, such as degree distribution, clustering coefficient, betweenness, etc, as well as the local topological structures, i.e., network motifs. It is shown that time series of different nature can be distinguished from these two aspects of the constructed networks. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:967 / 973
页数:7
相关论文
共 26 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Introduction to Focus Issue: Mesoscales in Complex Networks [J].
Almendral, Juan A. ;
Criado, Regino ;
Leyva, Inmaculada ;
Buldu, Javier M. ;
Sendina-Nadal, Irene .
CHAOS, 2011, 21 (01)
[3]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[4]   Recurrence networks-a novel paradigm for nonlinear time series analysis [J].
Donner, Reik V. ;
Zou, Yong ;
Donges, Jonathan F. ;
Marwan, Norbert ;
Kurths, Juergen .
NEW JOURNAL OF PHYSICS, 2010, 12
[5]   Complex network from time series based on phase space reconstruction [J].
Gao, Zhongke ;
Jin, Ningde .
CHAOS, 2009, 19 (03)
[6]   Synchronizability of network ensembles with prescribed statistical properties [J].
Guan, Shuguang ;
Wang, Xingang ;
Li, Kun ;
Wang, Bing-Hong ;
Lai, C. -H. .
CHAOS, 2008, 18 (01)
[7]   A characterization of horizontal visibility graphs and combinatorics on words [J].
Gutin, Gregory ;
Mansour, Toufik ;
Severini, Simone .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (12) :2421-2428
[8]  
Kantz H., 2004, NONLINEAR TIME SERIE, DOI DOI 10.1017/CBO9780511755798
[9]   The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion [J].
Lacasa, L. ;
Luque, B. ;
Luque, J. ;
Nuno, J. C. .
EPL, 2009, 86 (03)
[10]   From time series to complex networks:: The visibility graph [J].
Lacasa, Lucas ;
Luque, Bartolo ;
Ballesteros, Fernando ;
Luque, Jordi ;
Nuno, Juan Carlos .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :4972-4975