Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers

被引:74
作者
Kalra, Vibha [1 ]
Lee, Jinwoo [3 ]
Lee, Jung Hun [1 ]
Lee, Seung Goo [4 ]
Marquez, Manuel [5 ]
Wiesner, Ulrich [2 ]
Joo, Yong Lak [1 ]
机构
[1] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[3] Pohang Univ Sci & Technol, Dept Chem Engn, Sch Environm Sci & Engn, Kyungbuk 790784, South Korea
[4] Chungnam Natl Univ, Dept Organ Mat & Text Syst, FTIT BK21, Taejon 305764, South Korea
[5] NIST, Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
block copolymers; confined self-assembly; etectrospinning; magnetite nanoparticles; nanofibers;
D O I
10.1002/smll.200800279
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Coaxial nanofibers with poly (styrene-block-isoprene) (PS-b-PI)/magnetite nanoparticles as core and silica as shell are fabricated using electrospinning. ([1-4]) Thermally stable silica helps to anneal the fibers above the glass transition temperature of PS-b-PI and form ordered nanocomposite morphologies. Monodisperse magnetite nanoparticles (NPs; 4nm) are synthesized and surface coated with oleic acid to provide marginal selectivity towards an isoprene domain. When 4 wt% nanoparticles are added to symmetric PS-b-PI, transmission electron microscopy (TEM) images of microtomed electrospun fibers reveal that NPs are uniformly dispersed only in the PI domain, and that the confined lamellar assembly in the form of alternate concentric rings of PS and PI is preserved. For 10 wt% NPs, a morphology transition is seen from concentric rings to a co-continuous phase with NPs again uniformly dispersed in the PI domains. No aggregates or loss of PI selectivity is found in spite of interparticle attraction. Magnetic properties are measured using a superconducting quantum interference device (SQUID) magnetometer and all nanocomposite fiber samples exhibit superparamagnetic behavior.
引用
收藏
页码:2067 / 2073
页数:7
相关论文
共 29 条
[1]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[2]  
BOCKSTALLER MR, 1992, ADV MATER, V17, P1331
[3]   Control of nanoparticle location in block copolymers [J].
Chiu, JJ ;
Kim, BJ ;
Kramer, EJ ;
Pine, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (14) :5036-5037
[4]  
Cullity B. D., 1972, INTRO MAGNETIC MAT
[5]   Nylon 6 nanocomposites: the effect of matrix molecular weight [J].
Fornes, TD ;
Yoon, PJ ;
Keskkula, H ;
Paul, DR .
POLYMER, 2001, 42 (25) :9929-9940
[6]   Mesoporous aluminosilicate materials with superparamagnetic γ-Fe2O3 particles embedded in the walls [J].
Garcia, C ;
Zhang, YM ;
DiSalvo, F ;
Wiesner, U .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (13) :1526-1530
[7]   Magnetite nanoparticle dispersions stabilized with triblock copolymers [J].
Harris, LA ;
Goff, JD ;
Carmichael, AY ;
Riffle, JS ;
Harburn, JJ ;
St Pierre, TG ;
Saunders, M .
CHEMISTRY OF MATERIALS, 2003, 15 (06) :1367-1377
[8]   Superparamagnetic colloids: Controlled synthesis and niche applications [J].
Jeong, Unyong ;
Teng, Xiaowei ;
Wang, Yong ;
Yang, Hong ;
Xia, Younan .
ADVANCED MATERIALS, 2007, 19 (01) :33-60
[9]   Coarse-grained molecular dynamics simulation on the placement of nanoparticles within symmetric diblock copolymers under shear flow [J].
Kalra, Vibha ;
Mendez, Sergio ;
Escobedo, Fernando ;
Joo, Yong Lak .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (16)
[10]  
Kalra V, 2008, AIP CONF PROC, V1027, P534