Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

被引:35
作者
Butler, Andrew A. [1 ]
St-Onge, Marie-Pierre [2 ]
Siebert, Emily A. [1 ]
Medici, Valentina [3 ]
Stanhope, Kimber L. [4 ,5 ]
Havel, Peter J. [4 ,5 ]
机构
[1] St Louis Univ, Sch Med, Dept Pharmacol & Physiol, St Louis, MO 63104 USA
[2] Columbia Univ, Coll Phys & Surg, New York, NY USA
[3] Univ Calif Davis, Sch Med, Div Gastroenterol, Davis, CA 95616 USA
[4] Univ Calif Davis, Sch Vet Med, Dept Nutr, Davis, CA 95616 USA
[5] Univ Calif Davis, Sch Vet Med, Dept Mol Biosci, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
SWEETENED BEVERAGES; CHAIN TRIGLYCERIDES; FAT OXIDATION; ADIPOSITY; CORRELATE; INCREASE; MEN;
D O I
10.1038/srep14691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 +/- 0.26 to 3.28 +/- 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 +/- 0.29 to 3.93 +/- 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 +/- 0.32 versus 3.39 +/- 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.
引用
收藏
页数:10
相关论文
共 19 条
[1]   Fish Oil Supplementation Ameliorates Fructose-Induced Hypertriglyceridemia and Insulin Resistance in Adult Male Rhesus Macaques [J].
Bremer, Andrew A. ;
Stanhope, Kimber L. ;
Graham, James L. ;
Cummings, Bethany P. ;
Ampah, Steve B. ;
Saville, Benjamin R. ;
Havel, Peter J. .
JOURNAL OF NUTRITION, 2014, 144 (01) :5-11
[2]   Low Circulating Adropin Concentrations with Obesity and Aging Correlate with Risk Factors for Metabolic Disease and Increase after Gastric Bypass Surgery in Humans [J].
Butler, Andrew A. ;
Tam, Charmaine S. ;
Stanhope, Kimber L. ;
Wolfe, Bruce M. ;
Ali, Mohamed R. ;
O'Keeffe, Majella ;
St-Onge, Marie-Pierre ;
Ravussin, Eric ;
Havel, Peter J. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2012, 97 (10) :3783-3791
[3]   Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women [J].
Cox, C. L. ;
Stanhope, K. L. ;
Schwarz, J. M. ;
Graham, J. L. ;
Hatcher, B. ;
Griffen, S. C. ;
Bremer, A. A. ;
Berglund, L. ;
McGahan, J. P. ;
Havel, P. J. ;
Keim, N. L. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2012, 66 (02) :201-208
[4]   Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance [J].
Gao, Su ;
McMillan, Ryan P. ;
Zhu, Qingzhang ;
Lopaschuk, Gary D. ;
Hulver, Matthew W. ;
Butler, Andrew A. .
MOLECULAR METABOLISM, 2015, 4 (04) :310-324
[5]   Regulation of Substrate Oxidation Preferences in Muscle by the Peptide Hormone Adropin [J].
Gao, Su ;
McMillan, Ryan P. ;
Jacas, Jordi ;
Zhu, Qingzhang ;
Li, Xuesen ;
Kumar, Ganesh K. ;
Casals, Nuria ;
Hegardt, Fausto G. ;
Robbins, Paul D. ;
Lopaschuk, Gary D. ;
Hulver, Matthew W. ;
Butler, Andrew A. .
DIABETES, 2014, 63 (10) :3242-3252
[6]   Consuming fructose-sweetened beverages increases body adiposity in mice [J].
Jürgens, H ;
Haass, W ;
Castañeda, TR ;
Schürmann, A ;
Koebnick, C ;
Dombrowski, F ;
Otto, B ;
Nawrocki, AR ;
Scherer, PE ;
Spranger, J ;
Ristow, M ;
Joost, HG ;
Havel, PJ ;
Tschöp, MH .
OBESITY RESEARCH, 2005, 13 (07) :1146-1156
[7]   Adropin Deficiency Is Associated With Increased Adiposity and Insulin Resistance [J].
Kumar, K. Ganesh ;
Zhang, Jingying ;
Gao, Su ;
Rossi, Jari ;
McGuinness, Owen P. ;
Halem, Heather H. ;
Culler, Michael D. ;
Mynatt, Randall L. ;
Butler, Andrew A. .
OBESITY, 2012, 20 (07) :1394-1402
[8]   Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism [J].
Kumar, K. Ganesh ;
Trevaskis, James L. ;
Lam, Daniel D. ;
Sutton, Gregory M. ;
Koza, Robert A. ;
Chouljenko, Vladimir N. ;
Kousoulas, Konstantin G. ;
Rogers, Pamela M. ;
Kesterson, Robert A. ;
Thearle, Marie ;
Ferrante, Anthony W., Jr. ;
Mynatt, Randall L. ;
Burris, Thomas P. ;
Dong, Jesse Z. ;
Halem, Heather A. ;
Culler, Michael D. ;
Heisler, Lora K. ;
Stephens, Jacqueline M. ;
Butler, Andrew A. .
CELL METABOLISM, 2008, 8 (06) :468-481
[9]   Cytochrome P450 1B1: An unexpected modulator of liver fatty acid homeostasis [J].
Larsen, Michele Campaigne ;
Bushkofsky, Justin R. ;
Gorman, Tyler ;
Adhami, Vaqar ;
Mukhtar, Hasan ;
Wang, Suqing ;
Reeder, Scott B. ;
Sheibani, Nader ;
Jefcoate, Colin R. .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 571 :21-39
[10]   Adropin Is a Novel Regulator of Endothelial Function [J].
Lovren, Fina ;
Pan, Yi ;
Quan, Adrian ;
Singh, Krishna K. ;
Shukla, Praphulla C. ;
Gupta, Milan ;
Al-Omran, Mohammed ;
Teoh, Hwee ;
Verma, Subodh .
CIRCULATION, 2010, 122 (11) :S185-S192