Semiclassical analysis of low and zero energy scattering for one-dimensional Schrodinger operators with inverse square potentials

被引:6
|
作者
Costin, Ovidiu [2 ]
Schlag, Wilhelm [1 ]
Staubach, Wolfgang [3 ]
Tanveer, Saleh [2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
基金
美国国家科学基金会;
关键词
Schrodinger operators; Scattering matrix; Zero energy scattering; Modified WKB; Inverse square potential;
D O I
10.1016/j.jfa.2008.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the scattering matrix S(E; h) of the problem -h(2)psi"(x) + V(x)psi(x) = E psi(x) for positive potentials V is an element of C-infinity(R) with inverse square behavior as x -> +/-infinity. It is shown that each entry takes the form S-ij (E; h) = S-ij((0))(E; h)(1 + h sigma(ij) (E; h)) where S-ij((0))(E; h) is the WKB approximation relatj tive to the modifiedpotential V(x) + n(2)/4 < x >(-2) and the correction terms sigma(ij) satisfy |partial derivative(k)(E)sigma(ij)(E; h| <= CkE-k for all k >= 0 and uniformly in (E, h) is an element of (0, E-0) x (0, h(0)) where E-0, h(0) are small constants. This asymptotic behavior is not universal: if -h(2)partial derivative(2)(x) + V has a zero energy resonance, then S(E: h) exhibits different asymptotic behavior as E -> 0. The resonant case is excluded here due to V > 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2321 / 2362
页数:42
相关论文
共 24 条
  • [1] On Schrodinger operators with multipolar inverse-square potentials
    Felli, Veronica
    Marchini, Elsa M.
    Terracini, Susanna
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) : 265 - 316
  • [2] On a complete analysis of high-energy scattering matrix asymptotics for one dimensional Schrodinger operators with integrable potentials
    Rybkin, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) : 59 - 67
  • [3] One-dimensional Schrodinger operators with singular potentials: A Schwartz distributional formulation
    Dias, Nuno Costa
    Jorge, Cristina
    Prata, Joao Nuno
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6548 - 6580
  • [4] Uniqueness theorems in inverse spectral theory for one-dimensional Schrodinger operators
    Gesztesy, F
    Simon, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 349 - 373
  • [5] Variation operators associated with the semigroups generated by Schrodinger operators with inverse square potentials
    Almeida, Victor
    Betancor, Jorge J.
    Rodriguez-Mesa, Lourdes
    ANALYSIS AND APPLICATIONS, 2023, 21 (02) : 353 - 383
  • [6] Analysis of Schrodinger operators with inverse square potentials I: regularity results in 3D
    Hunsicker, Eugenie
    Li, Hengguang
    Nistor, Victor
    Usk, Ville
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (02): : 157 - 178
  • [7] Weighted estimates for powers and smoothing estimates of Schrodinger operators with inverse-square potentials
    The Anh Bui
    D'Ancona, Piero
    Xuan Thinh Duong
    Li, Ji
    Ly, Fu Ken
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 2771 - 2807
  • [8] Reflection symmetries and absence of eigenvalues for one-dimensional Schrodinger operators
    Damanik, D
    Hundertmark, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (07) : 1957 - 1962
  • [9] Lower bounds on the spectral gap of one-dimensional Schrodinger operators
    Kerner, Joachim
    ARCHIV DER MATHEMATIK, 2022, 119 (06) : 613 - 622
  • [10] One-dimensional Dirac operators with zero-range interactions: Spectral, scattering, and topological results
    Pankrashkin, Konstantin
    Richard, Serge
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)