ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF A SEMILINEAR DIRICHLET PROBLEM OUTSIDE THE UNIT BALL

被引:0
作者
Maagli, Habib [1 ]
Turki, Sameh [2 ]
El Abidine, Zagharide Zine [2 ]
机构
[1] King Abdulaziz Univ, Coll Arts & Sci, Dept Math, Rabigh 21911, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
关键词
Asymptotic behavior; Dirichlet problem; subsolution; supersolution; ELLIPTIC-EQUATIONS; BOUNDARY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are concerned with the existence, uniqueness and asymptotic behavior of a positive classical solution to the semilinear boundary-value problem -Delta u = a(x)u(sigma) in D, lim(vertical bar x vertical bar -> 1) u(x) = lim(vertical bar x vertical bar ->infinity) u(x) = 0. Here D is the complement of the closed unit ball of R-n (n >= 3), sigma < 1 and the function alpha is a nonnegative function in C-loc(gamma)(D), 0 < gamma < 1, satisfying some appropriate assumptions related to Karamata regular variation theory.
引用
收藏
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 1985, Jpn. J. Math, DOI DOI 10.4099/MATH1924.11.145
[2]  
[Anonymous], 1976, LECT NOTES MATH
[3]  
[Anonymous], 1978, BROWNIAN MOTION CLAS
[4]  
ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
[5]   Estimates on the green function and existence of positive solutions of nonlinear singular elliptic equations [J].
Bachar, I ;
Maâgli, H ;
Zeddini, N .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (03) :401-434
[6]   Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems [J].
Ben Othman, Sonia ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4137-4150
[7]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[8]   SOME SINGULAR, NON-LINEAR DIFFERENTIAL-EQUATIONS ARISING IN BOUNDARY-LAYER THEORY [J].
CALLEGARI, A ;
NACHMAN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 64 (01) :96-105
[9]   AN ANALYTICAL SOLUTION OF A NONLINEAR SINGULAR BOUNDARY VALUE PROBLEM IN THEORY OF VISCOUS FLUIDS [J].
CALLEGARI, AJ ;
FRIEDMAN, MB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 21 (03) :510-+
[10]   Combined effects in nonlinear singular elliptic problems in a bounded domain [J].
Chemmam, Rym ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) :301-318