Self-assembled foam-like graphene networks formed through nucleate boiling

被引:63
作者
Ahn, Ho Seon [1 ]
Jang, Ji-Wook [2 ]
Seol, Minsu [2 ]
Kim, Ji Min [3 ]
Yun, Dong-Jin
Park, Chibeom [4 ]
Kim, Hyungdae [5 ]
Youn, Duck Hyun [2 ]
Kim, Jae Young [2 ]
Park, Gunyeop [3 ]
Park, Su Cheong [3 ]
Kim, Jin Man [6 ]
Yu, Dong In [3 ]
Yong, Kijung [2 ]
Kim, Moo Hwan [3 ,6 ]
Lee, Jae Sung [2 ,6 ]
机构
[1] Incheon Natl Univ, Div Mech Syst Engn, Inchon 406772, South Korea
[2] POSTECH, Dept Chem Engn, Pohang 790784, South Korea
[3] POSTECH, Dept Mech Engn, Pohang 790784, South Korea
[4] POSTECH, Dept Chem, Pohang 790784, South Korea
[5] Kyung Hee Univ, Dept Nucl Engn, Yongin 446701, South Korea
[6] POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
新加坡国家研究基金会;
关键词
OXIDE; SURFACE; SHEETS; FILMS;
D O I
10.1038/srep01396
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-assembled foam-like graphene (SFG) structures were formed using a simple nucleate boiling method, which is governed by the dynamics of bubble generation and departure in the graphene colloid solution. The conductivity and sheet resistance of the calcined (400 degrees C) SFG film were 11.8 S.cm(-1) and 91.2 Omega square(-1), respectively, and were comparable to those of graphene obtained by chemical vapor deposition (CVD) (similar to 10 S.cm(-1))(.) The SFG structures can be directly formed on any substrate, including transparent conductive oxide (TCO) glasses, metals, bare glasses, and flexible polymers. As a potential application, SFG formed on fluorine-doped tin oxide (FTO) exhibited a slightly better overall efficiency (3.6%) than a conventional gold electrode (3.4%) as a cathode of quantum dot sensitized solar cells (QDSSCs).
引用
收藏
页数:8
相关论文
共 55 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Particle film growth driven by foam bubble coalescence
    Binks, Bernard P.
    Clint, John H.
    Fletcher, Paul D. I.
    Lees, Timothy J. G.
    Taylor, Philip
    [J]. CHEMICAL COMMUNICATIONS, 2006, (33) : 3531 - 3533
  • [3] Hierarchical nanoparticle assemblies formed by decorating breath figures
    Böker, A
    Lin, Y
    Chiapperini, K
    Horowitz, R
    Thompson, M
    Carreon, V
    Xu, T
    Abetz, C
    Skaff, H
    Dinsmore, AD
    Emrick, T
    Russell, TP
    [J]. NATURE MATERIALS, 2004, 3 (05) : 302 - 306
  • [4] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
  • [5] Cristina G.-N., 2007, NANO LETT, V7, P3499
  • [6] Preparation and characterization of graphene oxide paper
    Dikin, Dmitriy A.
    Stankovich, Sasha
    Zimney, Eric J.
    Piner, Richard D.
    Dommett, Geoffrey H. B.
    Evmenenko, Guennadi
    Nguyen, SonBinh T.
    Ruoff, Rodney S.
    [J]. NATURE, 2007, 448 (7152) : 457 - 460
  • [7] Super-hydrophobic surfaces: From natural to artificial
    Feng, L
    Li, SH
    Li, YS
    Li, HJ
    Zhang, LJ
    Zhai, J
    Song, YL
    Liu, BQ
    Jiang, L
    Zhu, DB
    [J]. ADVANCED MATERIALS, 2002, 14 (24) : 1857 - 1860
  • [8] Practical Chemical Sensors from Chemically Derived Graphene
    Fowler, Jesse D.
    Allen, Matthew J.
    Tung, Vincent C.
    Yang, Yang
    Kaner, Richard B.
    Weiller, Bruce H.
    [J]. ACS NANO, 2009, 3 (02) : 301 - 306
  • [9] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [10] Coalescence of air bubbles at air-water interface
    Ghosh, P
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A7) : 849 - 854